Skip to content

Commit

Permalink
STY Runs black with experimental_string_processing=true
Browse files Browse the repository at this point in the history
  • Loading branch information
thomasjpfan committed Jun 27, 2021
1 parent 25506f7 commit c5e84b8
Show file tree
Hide file tree
Showing 233 changed files with 1,361 additions and 1,397 deletions.
8 changes: 5 additions & 3 deletions benchmarks/bench_covertype.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,16 +125,18 @@ def load_data(dtype=np.float32, order="C", random_state=13):
nargs="?",
default=1,
type=int,
help="Number of concurrently running workers for "
"models that support parallelism.",
help=(
"Number of concurrently running workers for "
"models that support parallelism."
),
)
parser.add_argument(
"--order",
nargs="?",
default="C",
type=str,
choices=["F", "C"],
help="Allow to choose between fortran and C ordered " "data",
help="Allow to choose between fortran and C ordered data",
)
parser.add_argument(
"--random-seed",
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/bench_hist_gradient_boosting_adult.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def predict(est, data_test, target_test):
toc = time()
roc_auc = roc_auc_score(target_test, predicted_proba_test[:, 1])
acc = accuracy_score(target_test, predicted_test)
print(f"predicted in {toc - tic:.3f}s, " f"ROC AUC: {roc_auc:.4f}, ACC: {acc :.4f}")
print(f"predicted in {toc - tic:.3f}s, ROC AUC: {roc_auc:.4f}, ACC: {acc :.4f}")


data = fetch_openml(data_id=179, as_frame=False) # adult dataset
Expand Down
4 changes: 2 additions & 2 deletions benchmarks/bench_hist_gradient_boosting_higgsboson.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
args = parser.parse_args()

HERE = os.path.dirname(__file__)
URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/" "HIGGS.csv.gz"
URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz"
m = Memory(location=args.cache_loc, mmap_mode="r")

n_leaf_nodes = args.n_leaf_nodes
Expand Down Expand Up @@ -71,7 +71,7 @@ def predict(est, data_test, target_test):
toc = time()
roc_auc = roc_auc_score(target_test, predicted_proba_test[:, 1])
acc = accuracy_score(target_test, predicted_test)
print(f"predicted in {toc - tic:.3f}s, " f"ROC AUC: {roc_auc:.4f}, ACC: {acc :.4f}")
print(f"predicted in {toc - tic:.3f}s, ROC AUC: {roc_auc:.4f}, ACC: {acc :.4f}")


df = load_data()
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/bench_isolation_forest.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ def print_outlier_ratio(y):
predict_time = time() - tstart
fpr, tpr, thresholds = roc_curve(y_test, scoring)
auc_score = auc(fpr, tpr)
label = "%s (AUC: %0.3f, train_time= %0.2fs, " "test_time= %0.2fs)" % (
label = "%s (AUC: %0.3f, train_time= %0.2fs, test_time= %0.2fs)" % (
dat,
auc_score,
fit_time,
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/bench_isotonic.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def bench_isotonic_regression(Y):
"--iterations",
type=int,
required=True,
help="Number of iterations to average timings over " "for each problem size",
help="Number of iterations to average timings over for each problem size",
)
parser.add_argument(
"--log_min_problem_size",
Expand Down
6 changes: 2 additions & 4 deletions benchmarks/bench_lof.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,10 +98,8 @@
fpr,
tpr,
lw=1,
label=(
"ROC for %s (area = %0.3f, train-time: %0.2fs)"
% (dataset_name, AUC, fit_time)
),
label="ROC for %s (area = %0.3f, train-time: %0.2fs)"
% (dataset_name, AUC, fit_time),
)

plt.xlim([-0.05, 1.05])
Expand Down
18 changes: 11 additions & 7 deletions benchmarks/bench_mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,16 +132,18 @@ def load_data(dtype=np.float32, order="F"):
nargs="?",
default=1,
type=int,
help="Number of concurrently running workers for "
"models that support parallelism.",
help=(
"Number of concurrently running workers for "
"models that support parallelism."
),
)
parser.add_argument(
"--order",
nargs="?",
default="C",
type=str,
choices=["F", "C"],
help="Allow to choose between fortran and C ordered " "data",
help="Allow to choose between fortran and C ordered data",
)
parser.add_argument(
"--random-seed",
Expand Down Expand Up @@ -215,15 +217,17 @@ def load_data(dtype=np.float32, order="F"):
print("Classification performance:")
print("===========================")
print(
"{0: <24} {1: >10} {2: >11} {3: >12}"
"".format("Classifier ", "train-time", "test-time", "error-rate")
"{0: <24} {1: >10} {2: >11} {3: >12}".format(
"Classifier ", "train-time", "test-time", "error-rate"
)
)
print("-" * 60)
for name in sorted(args["classifiers"], key=error.get):

print(
"{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}"
"".format(name, train_time[name], test_time[name], error[name])
"{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}".format(
name, train_time[name], test_time[name], error[name]
)
)

print()
12 changes: 7 additions & 5 deletions benchmarks/bench_multilabel_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,14 +155,15 @@ def _plot(
"metrics",
nargs="*",
default=sorted(METRICS),
help="Specifies metrics to benchmark, defaults to all. "
"Choices are: {}".format(sorted(METRICS)),
help="Specifies metrics to benchmark, defaults to all. Choices are: {}".format(
sorted(METRICS)
),
)
ap.add_argument(
"--formats",
nargs="+",
choices=sorted(FORMATS),
help="Specifies multilabel formats to benchmark " "(defaults to all).",
help="Specifies multilabel formats to benchmark (defaults to all).",
)
ap.add_argument(
"--samples", type=int, default=1000, help="The number of samples to generate"
Expand All @@ -178,8 +179,9 @@ def _plot(
"--plot",
choices=["classes", "density", "samples"],
default=None,
help="Plot time with respect to this parameter varying "
"up to the specified value",
help=(
"Plot time with respect to this parameter varying up to the specified value"
),
)
ap.add_argument(
"--n-steps", default=10, type=int, help="Plot this many points for each metric"
Expand Down
15 changes: 6 additions & 9 deletions benchmarks/bench_plot_incremental_pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,7 @@ def plot_feature_times(all_times, batch_size, all_components, data):
)
plt.legend(loc="upper left")
plt.suptitle(
"Algorithm runtime vs. n_components\n \
LFW, size %i x %i"
"Algorithm runtime vs. n_components\n LFW, size %i x %i"
% data.shape
)
plt.xlabel("Number of components (out of max %i)" % data.shape[1])
Expand All @@ -57,7 +56,7 @@ def plot_feature_errors(all_errors, batch_size, all_components, data):
label="IncrementalPCA, bsize=%i" % batch_size,
)
plt.legend(loc="lower left")
plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape)
plt.suptitle("Algorithm error vs. n_components\nLFW, size %i x %i" % data.shape)
plt.xlabel("Number of components (out of max %i)" % data.shape[1])
plt.ylabel("Mean absolute error")

Expand All @@ -68,9 +67,8 @@ def plot_batch_times(all_times, n_features, all_batch_sizes, data):
plot_results(all_batch_sizes, all_times["ipca"], label="IncrementalPCA")
plt.legend(loc="lower left")
plt.suptitle(
"Algorithm runtime vs. batch_size for n_components %i\n \
LFW, size %i x %i"
% (n_features, data.shape[0], data.shape[1])
"Algorithm runtime vs. batch_size for n_components %i\n LFW,"
" size %i x %i" % (n_features, data.shape[0], data.shape[1])
)
plt.xlabel("Batch size")
plt.ylabel("Time (seconds)")
Expand All @@ -82,9 +80,8 @@ def plot_batch_errors(all_errors, n_features, all_batch_sizes, data):
plot_results(all_batch_sizes, all_errors["ipca"], label="IncrementalPCA")
plt.legend(loc="lower left")
plt.suptitle(
"Algorithm error vs. batch_size for n_components %i\n \
LFW, size %i x %i"
% (n_features, data.shape[0], data.shape[1])
"Algorithm error vs. batch_size for n_components %i\n LFW,"
" size %i x %i" % (n_features, data.shape[0], data.shape[1])
)
plt.xlabel("Batch size")
plt.ylabel("Mean absolute error")
Expand Down
14 changes: 8 additions & 6 deletions benchmarks/bench_plot_nmf.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,18 +254,19 @@ def _fit_transform(self, X, y=None, W=None, H=None, update_H=True):

if not isinstance(n_components, numbers.Integral) or n_components <= 0:
raise ValueError(
"Number of components must be a positive integer;"
" got (n_components=%r)" % n_components
"Number of components must be a positive integer; got (n_components=%r)"
% n_components
)
if not isinstance(self.max_iter, numbers.Integral) or self.max_iter < 0:
raise ValueError(
"Maximum number of iterations must be a positive "
"integer; got (max_iter=%r)" % self.max_iter
"integer; got (max_iter=%r)"
% self.max_iter
)
if not isinstance(self.tol, numbers.Number) or self.tol < 0:
raise ValueError(
"Tolerance for stopping criteria must be "
"positive; got (tol=%r)" % self.tol
"Tolerance for stopping criteria must be positive; got (tol=%r)"
% self.tol
)

# check W and H, or initialize them
Expand Down Expand Up @@ -306,7 +307,8 @@ def _fit_transform(self, X, y=None, W=None, H=None, update_H=True):
if n_iter == self.max_iter and self.tol > 0:
warnings.warn(
"Maximum number of iteration %d reached. Increase it"
" to improve convergence." % self.max_iter,
" to improve convergence."
% self.max_iter,
ConvergenceWarning,
)

Expand Down
15 changes: 9 additions & 6 deletions benchmarks/bench_random_projections.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@ def print_row(clf_type, time_fit, time_transform):
"--n-components",
dest="n_components",
default="auto",
help="Size of the random subspace." " ('auto' or int > 0)",
help="Size of the random subspace. ('auto' or int > 0)",
)

op.add_option(
Expand Down Expand Up @@ -149,8 +149,9 @@ def print_row(clf_type, time_fit, time_transform):
"--density",
dest="density",
default=1 / 3,
help="Density used by the sparse random projection."
" ('auto' or float (0.0, 1.0]",
help=(
"Density used by the sparse random projection. ('auto' or float (0.0, 1.0]"
),
)

op.add_option(
Expand All @@ -166,9 +167,11 @@ def print_row(clf_type, time_fit, time_transform):
dest="selected_transformers",
default="GaussianRandomProjection,SparseRandomProjection",
type=str,
help="Comma-separated list of transformer to benchmark. "
"Default: %default. Available: "
"GaussianRandomProjection,SparseRandomProjection",
help=(
"Comma-separated list of transformer to benchmark. "
"Default: %default. Available: "
"GaussianRandomProjection,SparseRandomProjection"
),
)

op.add_option(
Expand Down
6 changes: 4 additions & 2 deletions benchmarks/bench_sample_without_replacement.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,10 @@ def bench_sample(sampling, n_population, n_samples):
dest="selected_algorithm",
default=default_algorithms,
type=str,
help="Comma-separated list of transformer to benchmark. "
"Default: %default. \nAvailable: %default",
help=(
"Comma-separated list of transformer to benchmark. "
"Default: %default. \nAvailable: %default"
),
)

# op.add_option("--random-seed",
Expand Down
16 changes: 10 additions & 6 deletions benchmarks/bench_tsne_mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,26 +74,30 @@ def sanitize(filename):
parser.add_argument(
"--bhtsne",
action="store_true",
help="if set and the reference bhtsne code is "
"correctly installed, run it in the benchmark.",
help=(
"if set and the reference bhtsne code is "
"correctly installed, run it in the benchmark."
),
)
parser.add_argument(
"--all",
action="store_true",
help="if set, run the benchmark with the whole MNIST."
"dataset. Note that it will take up to 1 hour.",
help=(
"if set, run the benchmark with the whole MNIST."
"dataset. Note that it will take up to 1 hour."
),
)
parser.add_argument(
"--profile",
action="store_true",
help="if set, run the benchmark with a memory " "profiler.",
help="if set, run the benchmark with a memory profiler.",
)
parser.add_argument("--verbose", type=int, default=0)
parser.add_argument(
"--pca-components",
type=int,
default=50,
help="Number of principal components for " "preprocessing.",
help="Number of principal components for preprocessing.",
)
args = parser.parse_args()

Expand Down
12 changes: 6 additions & 6 deletions build_tools/generate_authors_table.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,12 +117,12 @@ def key(profile):

def generate_table(contributors):
lines = [
(".. raw :: html\n"),
(" <!-- Generated by generate_authors_table.py -->"),
(' <div class="sk-authors-container">'),
(" <style>"),
(" img.avatar {border-radius: 10px;}"),
(" </style>"),
".. raw :: html\n",
" <!-- Generated by generate_authors_table.py -->",
' <div class="sk-authors-container">',
" <style>",
" img.avatar {border-radius: 10px;}",
" </style>",
]
for contributor in contributors:
lines.append(" <div>")
Expand Down
14 changes: 7 additions & 7 deletions doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
mathjax_path = ""
else:
extensions.append("sphinx.ext.mathjax")
mathjax_path = "https://cdn.jsdelivr.net/npm/mathjax@3/es5/" "tex-chtml.js"
mathjax_path = "https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"

autodoc_default_options = {"members": True, "inherited-members": True}

Expand Down Expand Up @@ -285,7 +285,7 @@
v = parse(release)
if v.release is None:
raise ValueError(
"Ill-formed version: {!r}. Version should follow " "PEP440".format(version)
"Ill-formed version: {!r}. Version should follow PEP440".format(version)
)

if v.is_devrelease:
Expand Down Expand Up @@ -435,9 +435,7 @@ def generate_min_dependency_table(app):

for package, (version, tags) in dependent_packages.items():
output.write(
f"{package:<{package_header_len}} "
f"{version:<{version_header_len}} "
f"{tags}\n"
f"{package:<{package_header_len}} {version:<{version_header_len}} {tags}\n"
)

output.write(
Expand Down Expand Up @@ -494,8 +492,10 @@ def setup(app):
warnings.filterwarnings(
"ignore",
category=UserWarning,
message="Matplotlib is currently using agg, which is a"
" non-GUI backend, so cannot show the figure.",
message=(
"Matplotlib is currently using agg, which is a"
" non-GUI backend, so cannot show the figure."
),
)


Expand Down
4 changes: 1 addition & 3 deletions doc/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,9 +92,7 @@ def setup_unsupervised_learning():
try:
import skimage # noqa
except ImportError:
raise SkipTest(
"Skipping unsupervised_learning.rst, scikit-image " "not installed"
)
raise SkipTest("Skipping unsupervised_learning.rst, scikit-image not installed")
# ignore deprecation warnings from scipy.misc.face
warnings.filterwarnings(
"ignore", "The binary mode of fromstring", DeprecationWarning
Expand Down
Loading

0 comments on commit c5e84b8

Please sign in to comment.