Skip to content

pnnx/pnnx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pnnx

download

PyTorch Neural Network eXchange

Note: The current implementation is in https://github.com/Tencent/ncnn/tree/master/tools/pnnx

What is pnnx

PyTorch Neural Network eXchange(PNNX) is an open standard for PyTorch model interoperability. PNNX provides an open model format for PyTorch. It defines computation graph as well as high level operators strictly matches PyTorch.

  • optimize torch model
  • reduce extension package dependency
  • convert torchscript / onnx back to python
  • export to portable pnnx format / onnx-zero / ncnn
flowchart TD
    torchmodel["torch model\ntorchvision.models.resnet18()"]
    othermodel["caffe, mxnet\nkeras, tensorflow\npaddlepaddle, etc."]
    torchscript["torchscript file\nresnet18.pt"]
    onnx["onnx file\nresnet18.onnx"]
    optmodel["optimized torch model\nresnet18_pnnx.Model()"]
    ncnnmodel["ncnn model\nresnet18.ncnn.param/bin"]
    onnxzeromodel["onnx-zero model\nresnet18.pnnx.onnx"]

    subgraph pnnx
        optmodel
        ncnnmodel
        onnxzeromodel
    end

    torchmodel -->|"mod = torch.jit.trace(model, x)\nmod.save('resnet18.pt')"| torchscript
    torchmodel -->|"torch.onnx.export(model, x, 'resnet18.onnx')"| onnx
    othermodel -->|"export to onnx"| onnx
    torchmodel -->|"pnnx.export(model, 'resnet18.pt', x)"| pnnx
    torchscript -->|"pnnx.convert('resnet18.pt', x)"| pnnx
    onnx -->|"pnnx.convert('resnet18.onnx', x)"| pnnx

Loading

How to install pnnx

----- A. python pip (recommended)

  • Windows/Linux/macOS 64bit
  • python 3.7 or later
pip3 install pnnx

----- B. portable binary package (recommended if you hate python)

  • Windows/Linux/macOS 64bit
  • For Linux, glibc 2.17+

Download portable pnnx binary package from https://github.com/pnnx/pnnx/releases and extract it.

This package includes all the binaries required. It is portable, so no CUDA or PyTorch runtime environment is needed :)


Windows

Linux(x86_64)

Linux(aarch64)

macOS(universal)

----- C. build from source

  1. install pytorch
  2. (optional) install torchvision for pnnx torchvision operator support
  3. (optional) install protobuf for pnnx onnx-zero support
  4. clone https://github.com/Tencent/ncnn.git
  5. build pnnx in ncnn/tools/pnnx with cmake

You will probably refer https://github.com/pnnx/pnnx/blob/main/.github/workflows/release.yml for detailed steps

git clone https://github.com/Tencent/ncnn.git
mkdir ncnn/tools/pnnx/build
cd ncnn/tools/pnnx/build
cmake -DCMAKE_INSTALL_PREFIX=install -DTorch_INSTALL_DIR=<your libtorch install dir> -DTorchVision_INSTALL_DIR=<your torchvision install dir> ..
cmake --build . --config Release -j 4
cmake --build . --config Release --target install

How to use pnnx

----- A. python

  1. optimize and export your torch model with pnnx.export()
import torch
import torchvision.models as models
import pnnx

model = models.resnet18(pretrained=True)

x = torch.rand(1, 3, 224, 224)

opt_model = pnnx.export(model, "resnet18.pt", x)

# use tuple for model with multiple inputs
# opt_model = pnnx.export(model, "resnet18.pt", (x, y, z))
  1. use optimized module just like the normal one
result = opt_model(x)
  1. pick resnet18_pnnx.py for pnnx-optimized torch model
  2. pick resnet18.ncnn.param and resnet18.ncnn.bin for ncnn inference

----- B. command line

  1. export your torch model to torchscript / onnx
import torch
import torchvision.models as models

net = models.resnet18(pretrained=True)
net = net.eval()

x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when tracing raises error
# mod = torch.jit.trace(net, x, check_trace=False)
mod = torch.jit.trace(net, x)

mod.save("resnet18.pt")

# You could also try exporting to the good-old onnx
torch.onnx.export(net, x, 'resnet18.onnx')
  1. pnnx convert torchscript / onnx to optimized pnnx model and ncnn model files
./pnnx resnet18.pt inputshape=[1,3,224,224]
./pnnx resnet18.onnx inputshape=[1,3,224,224]

macOS zsh user may need double quotes to prevent ambiguity

./pnnx resnet18.pt "inputshape=[1,3,224,224]"

For model with multiple inputs, use list

./pnnx resnet18.pt inputshape=[1,3,224,224],[1,32]

For model with non-fp32 input data type, add type suffix

./pnnx resnet18.pt inputshape=[1,3,224,224]f32,[1,32]i64
  1. pick resnet18_pnnx.py for pnnx-optimized torch model
  2. pick resnet18.ncnn.param and resnet18.ncnn.bin for ncnn inference

----- visualize pnnx with netron

Open https://netron.app/ in browser, and drag resnet18.pnnx.param or resnet18.pnnx.onnx into it.

----- compare inference result

Normally, you will get seven files

resnet18.pnnx.param PNNX graph definition
resnet18.pnnx.bin PNNX model weight
resnet18_pnnx.py PyTorch script for inference, the python code for model construction and weight initialization
resnet18.pnnx.onnx PNNX model in onnx format
resnet18.ncnn.param ncnn graph definition
resnet18.ncnn.bin ncnn model weight
resnet18_ncnn.py pyncnn script for inference
pip3 install ncnn

run inference script generated by pnnx and check if the outputs are close enough.

$ python resnet18_pnnx.py
tensor([[-1.5752e+00,  6.8381e-01,  1.4599e+00,  1.1986e+00,  1.0503e+00,
         -5.0585e-01,  9.1962e-01,  1.4127e-01, -1.2256e+00, -3.8200e-01,
          1.1840e+00,  2.5817e+00,  1.3319e+00,  2.8250e+00,  2.6328e+00,
          1.1827e+00,  1.6862e+00,  2.9742e-01,  1.5851e+00,  1.9562e+00,
          ...

$ python resnet18_ncnn.py
tensor([[-1.5719e+00,  6.8591e-01,  1.4592e+00,  1.1973e+00,  1.0503e+00,
         -5.0833e-01,  9.1693e-01,  1.4180e-01, -1.2239e+00, -3.8417e-01,
          1.1816e+00,  2.5768e+00,  1.3295e+00,  2.8196e+00,  2.6259e+00,
          1.1806e+00,  1.6830e+00,  2.9536e-01,  1.5808e+00,  1.9530e+00,
          ...

----- detailed options

Usage: pnnx [model.pt] [(key=value)...]
  pnnxparam=model.pnnx.param
  pnnxbin=model.pnnx.bin
  pnnxpy=model_pnnx.py
  pnnxonnx=model.pnnx.onnx
  ncnnparam=model.ncnn.param
  ncnnbin=model.ncnn.bin
  ncnnpy=model_ncnn.py
  fp16=1
  optlevel=2
  device=cpu/gpu
  inputshape=[1,3,224,224],...
  inputshape2=[1,3,320,320],...
  customop=/home/nihui/.cache/torch_extensions/fused/fused.so,...
  moduleop=models.common.Focus,models.yolo.Detect,...
Sample usage: pnnx mobilenet_v2.pt inputshape=[1,3,224,224]
              pnnx yolov5s.pt inputshape=[1,3,640,640]f32 inputshape2=[1,3,320,320]f32 device=gpu moduleop=models.common.Focus,models.yolo.Detect
paramter default value description
model.pt (required) The torchscript file path
pnnxparam *.pnnx.param
(* is the model name)
PNNX graph definition file
pnnxbin *.pnnx.bin PNNX model weight
pnnxpy *_pnnx.py PyTorch script for inference, including model construction and weight initialization code
pnnxonnx *.pnnx.onnx PNNX model in onnx format
ncnnparam *.ncnn.param ncnn graph definition
ncnnbin *.ncnn.bin ncnn model weight
ncnnpy *_ncnn.py pyncnn script for inference
fp16 1 save ncnn weight and onnx in fp16 data type
optlevel 2 graph optimization level
0 = do not apply optimization
1 = optimize for inference
2 = optimize more for inference
device cpu device type for the input in torchscript model, ignored for onnx model, cpu or gpu
inputshape (optional) shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [1,3,224,224],[1,3,224,224] for the model that have 2 inputs.
shape tuple can be optionally decorated by a typename, like [1,3,224,224]f32 for float32 type.
f32 = torch.float32 or torch.float
f64 = torch.float64 or torch.double
f16 = torch.float16 or torch.half
u8 = torch.uint8
i8 = torch.int8
i16 = torch.int16 or torch.short
i32 = torch.int32 or torch.int
i64 = torch.int64 or torch.long
c32 = torch.complex32
c64 = torch.complex64
c128 = torch.complex128
inputshape2 (optional) shapes of alternative model inputs, the format is identical to inputshape. Usually, it is used with inputshape to resolve dynamic shape (-1) in model graph.
customop (optional) list of Torch extensions (dynamic library) for custom operators, ignored for onnx model, separated by ",". For example, /home/nihui/.cache/torch_extensions/fused/fused.so,...
moduleop (optional) list of modules to keep as one big operator, ignored for onnx model, separated by ",". for example, models.common.Focus,models.yolo.Detect