2.1.0 (Aug 18, 2024)
NumPy 2.1.0 Release Notes
NumPy 2.1.0 provides support for the upcoming Python 3.13 release and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get us back into our usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for the array-api 2023.12 standard.
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
Python versions 3.10-3.13 are supported in this release.
New functions
New function numpy.unstack
A new function np.unstack(array, axis=...)
was added, which splits an
array into a tuple of arrays along an axis. It serves as the inverse of
[numpy.stack]{.title-ref}.
(gh-26579)
Deprecations
-
The
fix_imports
keyword argument innumpy.save
is deprecated.
Since NumPy 1.17,numpy.save
uses a pickle protocol that no longer
supports Python 2, and ignoredfix_imports
keyword. This keyword
is kept only for backward compatibility. It is now deprecated.(gh-26452)
-
Passing non-integer inputs as the first argument of
[bincount]{.title-ref} is now deprecated, because such inputs are
silently cast to integers with no warning about loss of precision.(gh-27076)
Expired deprecations
-
Scalars and 0D arrays are disallowed for
numpy.nonzero
and
numpy.ndarray.nonzero
.(gh-26268)
-
set_string_function
internal function was removed and
PyArray_SetStringFunction
was stubbed out.(gh-26611)
C API changes
API symbols now hidden but customizable
NumPy now defaults to hide the API symbols it adds to allow all NumPy
API usage. This means that by default you cannot dynamically fetch the
NumPy API from another library (this was never possible on windows).
If you are experiencing linking errors related to PyArray_API
or
PyArray_RUNTIME_VERSION
, you can define the NPY_API_SYMBOL_ATTRIBUTE
to opt-out of this change.
If you are experiencing problems due to an upstream header including
NumPy, the solution is to make sure you
#include "numpy/ndarrayobject.h"
before their header and import NumPy
yourself based on including-the-c-api
.
(gh-26103)
Many shims removed from npy_3kcompat.h
Many of the old shims and helper functions were removed from
npy_3kcompat.h
. If you find yourself in need of these, vendor the
previous version of the file into your codebase.
(gh-26842)
New PyUFuncObject
field process_core_dims_func
The field process_core_dims_func
was added to the structure
PyUFuncObject
. For generalized ufuncs, this field can be set to a
function of type PyUFunc_ProcessCoreDimsFunc
that will be called when
the ufunc is called. It allows the ufunc author to check that core
dimensions satisfy additional constraints, and to set output core
dimension sizes if they have not been provided.
(gh-26908)
New Features
Preliminary Support for Free-Threaded CPython 3.13
CPython 3.13 will be available as an experimental free-threaded build.
See https://py-free-threading.github.io, PEP 703 and the
CPython 3.13 release notes for more detail about free-threaded Python.
NumPy 2.1 has preliminary support for the free-threaded build of CPython
3.13. This support was enabled by fixing a number of C thread-safety
issues in NumPy. Before NumPy 2.1, NumPy used a large number of C global
static variables to store runtime caches and other state. We have either
refactored to avoid the need for global state, converted the global
state to thread-local state, or added locking.
Support for free-threaded Python does not mean that NumPy is thread
safe. Read-only shared access to ndarray should be safe. NumPy exposes
shared mutable state and we have not added any locking to the array
object itself to serialize access to shared state. Care must be taken in
user code to avoid races if you would like to mutate the same array in
multiple threads. It is certainly possible to crash NumPy by mutating an
array simultaneously in multiple threads, for example by calling a ufunc
and the resize
method simultaneously. For now our guidance is:
"don't do that". In the future we would like to provide stronger
guarantees.
Object arrays in particular need special care, since the GIL previously
provided locking for object array access and no longer does. See
Issue #27199 for more information about object
arrays in the free-threaded build.
If you are interested in free-threaded Python, for example because you
have a multiprocessing-based workflow that you are interested in running
with Python threads, we encourage testing and experimentation.
If you run into problems that you suspect are because of NumPy, please
open an issue,
checking first if the bug also occurs in the "regular" non-free-threaded CPython 3.13
build. Many threading bugs can also occur in code that releases
the GIL; disabling the GIL only makes it easier to hit threading bugs.
(gh-26157)
f2py
can generate freethreading-compatible C extensions
Pass --freethreading-compatible
to the f2py CLI tool to produce a C
extension marked as compatible with the free threading CPython
interpreter. Doing so prevents the interpreter from re-enabling the GIL
at runtime when it imports the C extension. Note that f2py
does not
analyze fortran code for thread safety, so you must verify that the
wrapped fortran code is thread safe before marking the extension as
compatible.
(gh-26981)
-
numpy.reshape
andnumpy.ndarray.reshape
now supportshape
and
copy
arguments.(gh-26292)
-
NumPy now supports DLPack v1, support for older versions will be
deprecated in the future.(gh-26501)
-
numpy.asanyarray
now supportscopy
anddevice
arguments,
matchingnumpy.asarray
.(gh-26580)
-
numpy.printoptions
,numpy.get_printoptions
, and
numpy.set_printoptions
now support a new option,override_repr
,
for defining customrepr(array)
behavior.(gh-26611)
-
numpy.cumulative_sum
andnumpy.cumulative_prod
were added as
Array API compatible alternatives fornumpy.cumsum
and
numpy.cumprod
. The new functions can include a fixed initial
(zeros forsum
and ones forprod
) in the result.(gh-26724)
-
numpy.clip
now supportsmax
andmin
keyword arguments which
are meant to replacea_min
anda_max
. Also, fornp.clip(a)
or
np.clip(a, None, None)
a copy of the input array will be returned
instead of raising an error.(gh-26724)
-
numpy.astype
now supportsdevice
argument.(gh-26724)
Improvements
histogram
auto-binning now returns bin sizes >=1 for integer input data
For integer input data, bin sizes smaller than 1 result in spurious
empty bins. This is now avoided when the number of bins is computed
using one of the algorithms provided by histogram_bin_edges
.
(gh-12150)
ndarray
shape-type parameter is now covariant and bound to tuple[int, ...]
Static typing for ndarray
is a long-term effort that continues with
this change. It is a generic type with type parameters for the shape and
the data type. Previously, the shape type parameter could be any value.
This change restricts it to a tuple of ints, as one would expect from
using ndarray.shape
. Further, the shape-type parameter has been
changed from invariant to covariant. This change also applies to the
subtypes of ndarray
, e.g. numpy.ma.MaskedArray
. See the
typing docs
for more information.
(gh-26081)
np.quantile
with method closest_observation
chooses nearest even order statistic
This changes the definition of nearest for border cases from the nearest
odd order statistic to nearest even order statistic. The numpy
implementation now matches other reference implementations.
(gh-26656)
lapack_lite
is now thread safe
NumPy provides a minimal low-performance version of LAPACK named
lapack_lite
that can be used if no BLAS/LAPACK system is detected at
build time.
Until now, lapack_lite
was not thread safe. Single-threaded use cases
did not hit any issues, but running linear algebra operations in
multiple threads could lead to errors, incorrect results, or segfaults
due to data races.
We have added a global lock, serializing access to lapack_lite
in
multiple threads.
(gh-26750)
The numpy.printoptions
context manager is now thread and async-safe
In prior versions of NumPy, the printoptions were defined using a
combination of Python and C global variables. We have refactored so the
state is stored in a python ContextVar
, making the context manager
thread and async-safe.
(gh-26846)
Type hinting numpy.polynomial
Starting from the 2.1 release, PEP 484 type annotations have been
included for the functions and convenience classes in numpy.polynomial
and its sub-packages.
(gh-26897)
Improved numpy.dtypes
type hints
The type annotations for numpy.dtypes
are now a better reflection of
the runtime: The numpy.dtype
type-aliases have been replaced with
specialized dtype
subtypes, and the previously missing annotations
for numpy.dtypes.StringDType
have been added.
(gh-27008)
Performance improvements and changes
-
numpy.save
now uses pickle protocol version 4 for saving arrays
with object dtype, which allows for pickle objects larger than 4GB
and improves saving speed by about 5% for large arrays.(gh-26388)
-
OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
benchmarking, there are 5 clusters of performance around these
kernels:PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX
.(gh-27147)
-
OpenBLAS on windows is linked without quadmath, simplifying
licensing(gh-27147)
-
Due to a regression in OpenBLAS on windows, the performance
improvements when using multiple threads for OpenBLAS 0.3.26 were
reverted.(gh-27147)
ma.cov
and ma.corrcoef
are now significantly faster
The private function has been refactored along with ma.cov
and
ma.corrcoef
. They are now significantly faster, particularly on large,
masked arrays.
(gh-26285)
Changes
-
As
numpy.vecdot
is now a ufunc it has a less precise signature.
This is due to the limitations of ufunc's typing stub.(gh-26313)
-
numpy.floor
,numpy.ceil
, andnumpy.trunc
now won't perform
casting to a floating dtype for integer and boolean dtype input
arrays.(gh-26766)
ma.corrcoef
may return a slightly different result
A pairwise observation approach is currently used in ma.corrcoef
to
calculate the standard deviations for each pair of variables. This has
been changed as it is being used to normalise the covariance, estimated
using ma.cov
, which does not consider the observations for each
variable in a pairwise manner, rendering it unnecessary. The
normalisation has been replaced by the more appropriate standard
deviation for each variable, which significantly reduces the wall time,
but will return slightly different estimates of the correlation
coefficients in cases where the observations between a pair of variables
are not aligned. However, it will return the same estimates in all other
cases, including returning the same correlation matrix as corrcoef
when using a masked array with no masked values.
(gh-26285)
Cast-safety fixes in copyto
and full
copyto
now uses NEP 50 correctly and applies this to its cast safety.
Python integer to NumPy integer casts and Python float to NumPy float
casts are now considered "safe" even if assignment may fail or
precision may be lost. This means the following examples change
slightly:
-
np.copyto(int8_arr, 1000)
previously performed an unsafe/same-kind cast
of the Python integer. It will now always raise, to achieve an
unsafe cast you must pass an array or NumPy scalar. -
np.copyto(uint8_arr, 1000, casting="safe")
will raise an
OverflowError rather than a TypeError due to same-kind casting. -
np.copyto(float32_arr, 1e300, casting="safe")
will overflow to
inf
(float32 cannot hold1e300
) rather raising a TypeError.
Further, only the dtype is used when assigning NumPy scalars (or 0-d
arrays), meaning that the following behaves differently:
np.copyto(float32_arr, np.float64(3.0), casting="safe")
raises.np.coptyo(int8_arr, np.int64(100), casting="safe")
raises.
Previously, NumPy checked whether the 100 fits theint8_arr
.
This aligns copyto
, full
, and full_like
with the correct NumPy 2
behavior.
(gh-27091)
Checksums
MD5
2323404663c0b2a86362319d7526eb80 numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
3d4bca8d05eb1eba859e77ff8f91d843 numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
9bd065f147dbf3f2d59ab57bff4f0074 numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
47d177533511901cd6bf77f72cbd3d6e numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
530b7f38f64216f1322b39bc50f36c0c numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d2a3161a10811a675a29a63e25636d83 numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4e9fb20b080f7931791da71708740b83 numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
776eb610795d63217980a36eb23bf268 numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
8328b9e2afa4013aaf3e4963349445e2 numpy-2.1.0-cp310-cp310-win32.whl
e3184b9979192c8d7b80deb2af16d6bb numpy-2.1.0-cp310-cp310-win_amd64.whl
54571aef9d9081e35bebef10f8d64e75 numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
841dac2386c1da870a384b64cd31e32b numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
0fe85239ebe336d2baaddcb0ed001dc7 numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
772a55a6c46f7b643af4640c2ca68d70 numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64fefbc527229521cf2a516b778b8aa7 numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5cdb3d262d8c513b0f08cd1b6ba48512 numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
16140f5de42e87d84b80c350fd014893 numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
5e37df534d167af1966e099e0be9d94a numpy-2.1.0-cp311-cp311-win32.whl
ee443aa000621bed8bb2d6a94afd89b5 numpy-2.1.0-cp311-cp311-win_amd64.whl
d8c911fc34a8dad4ed821036563b5758 numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
ec25d637c43ae8229052e62a4f40f2d2 numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
67c7abca3d0339f17a8543abc0e7bf11 numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
0d36ec6a64cbef1d727eb608a236ad2c numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
0eedab574a3b75ec237be910e9717153 numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
73dd2a5d0c85007bf5fdb4b7f66b8451 numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94fb0cfbc647a34177c766570fad752b numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
de3efbbcd792a1f82d0e3e175ea02ca9 numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
9a63ebbfb3c4c6eba77ef0723a5dc86f numpy-2.1.0-cp312-cp312-win32.whl
c68bc27545ac68c54935a1d0278b18f6 numpy-2.1.0-cp312-cp312-win_amd64.whl
f2795bb974af42e2723e32af9b14b66d numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
2f7426b06a332ea7a20159f3c06d67d1 numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
fcef18e031fc8588227023bac55d9636 numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
cbb5ca4dc798ea397344c93a2549e73e numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
573213bea3a67452a310355adc7c6aa1 numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
24f8c8a1235aeaedb8f154a984b3c78b numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2ef762c0ebb02b58a339c1e38f032b2 numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
50e68cbfeb330aff607969c30251632d numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
21228342cd1b4ff8c7ec1aea45c07186 numpy-2.1.0-cp313-cp313-win32.whl
8d234b05f0c4faf7b9884a1f0f19c23d numpy-2.1.0-cp313-cp313-win_amd64.whl
e0c19ca29fa8e8e051107cd36b978f05 numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
98756f2ff9adc2cf374c28db77e28312 numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
69786349d1f392dc6ac3fe00271e941b numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
4d1481bcb17aaebfc785e005455da223 numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
1d403eda14369ab023d5ae1c15dce25c numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cdeece2cd6508eeee5a4c3150b58ec59 numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
85347b754d8324c508f7aeb7de243feb numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
6ff18d36d0940de6c1cc962a61b44bd5 numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
2f7d60a99c236a8f909bd86b8ed1e3a4 numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
dc610133d9f09e5b3d396859e75c5593 numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
6a2883ee5b16ab5c031037cc63c20e9b numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c914ba2fe3fcdcd04c8fe6a8374ea5fb numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
4cb2230ffa1cc41329ae29bd69ee08de numpy-2.1.0.tar.gz
SHA256
6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8 numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911 numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673 numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84 numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33 numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211 numpy-2.1.0-cp310-cp310-win32.whl
f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa numpy-2.1.0-cp310-cp310-win_amd64.whl
76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1 numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3 numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36 numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e numpy-2.1.0-cp311-cp311-win32.whl
0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b numpy-2.1.0-cp311-cp311-win_amd64.whl
fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736 numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529 numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1 numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8 numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745 numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111 numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0 numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574 numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02 numpy-2.1.0-cp312-cp312-win32.whl
a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc numpy-2.1.0-cp312-cp312-win_amd64.whl
8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667 numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33 numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195 numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977 numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1 numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62 numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324 numpy-2.1.0-cp313-cp313-win32.whl
de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5 numpy-2.1.0-cp313-cp313-win_amd64.whl
343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06 numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883 numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300 numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6 numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575 numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2 numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2 numpy-2.1.0.tar.gz