Python Deep Learning Toolkit.
Install the package:
pip install flameai
Update the package:
python3 -m pip install --upgrade pip
pip3 install --upgrade flameai
Evaluate the performance of a binary classification model:
# simple.py
import flameai
y_true = [0, 0, 0, 1, 0, 1, 0, 1, 1, 0]
y_pred = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
flameai.eval_binary(y_true, y_pred, threshold=0.5)
$ python examples/simple.py
threshold: 0.50000
accuracy: 0.70000
precision: 0.60000
recall: 0.75000
f1_score: 0.66667
auc: 0.70833
cross-entropy loss: 4.03816
True Positive (TP): 3
True Negative (TN): 4
False Positive (FP): 2
False Negative (FN): 1
confusion matrix:
[[4 2]
[1 3]]
More examples: examples
Create a conda environment:
# Create env
mamba create -n python_3_10 python=3.10
# Activate env
conda activate python_3_10
# Check envs
conda info --envs
# Deactivate env
conda deactivate
# Remove env
conda env remove --name python_3_10
Install the package from source (or local wheel):
# Check if flameai has been installed
pip list | grep flameai
# Install from source
pip install -e .
# Or install from local wheel
# `pip install dist/flameai-[VERSION]-py3-none-any.whl`
# Uninstall
pip uninstall flameai
# Reinstall
pip uninstall flameai -y && pip install -e .
Test:
# Install pytest
pip install pytest
# Run tests
pytest
# Install nox
pip install nox
# Run nox
nox
Lint:
# Install flake8 and flake8-import-order
pip install flake8
pip install flake8-import-order
# Lint
flake8 --import-order-style google
Build:
python3 -m pip install --upgrade build
python3 -m build
Upload:
python3 -m pip install --upgrade twine
twine upload dist/*