Skip to content

kimoyami/PRDC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Code for ICML'23 paper "Policy Regularization with Dataset Constraint for Offline Reinforcement Learning", arXiv link.

If you find this repository useful for your research, please cite:

@inproceedings{
    prdc,
    title={Policy Regularization with Dataset Constraint for Offline Reinforcement Learning},
    author={Yuhang Ran and Yi-Chen Li and Fuxiang Zhang and Zongzhang Zhang and Yang Yu},
    booktitle={International Conference on Machine Learning},
    year={2023}
}

Install dependency

pip install -r requirements.txt

Install the D4RL benchmark

git clone https://github.com/Farama-Foundation/D4RL.git
cd d4rl
pip install -e .

Run experiment

For halfcheetah:

python main.py --env_id halfcheetah-medium-v2 --seed 1024 --device cuda:0 --alpha 40.0 --beta 2.0 --k 1

For hopper & walker2d:

python main.py --env_id hopper-medium-v2 --seed 1024 --device cuda:0 --alpha 2.5 --beta 2.0 --k 1

We use reward shaping for antmaze, which is a common trick used by CQL, IQL, FisherBRC, etc.

python main.py --env_id antmaze-medium-play-v2 --seed 1024 --device cuda:0 --alpha 7.5 --beta 7.5 --k 1 --scale=10000 --shift=-1

See result

tensorboard --logdir='./result'

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages