-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Uploaded models and simple test scripts
- Loading branch information
Showing
3 changed files
with
256 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
from keras.models import Model | ||
from keras.layers import Input, concatenate, Conv2D, Conv2DTranspose, MaxPooling2D, ZeroPadding2D | ||
from keras import backend as keras | ||
|
||
class modelsClass(object): | ||
|
||
def __init__(self, img_rows = 272, img_cols = 480): | ||
|
||
self.img_rows = img_rows | ||
self.img_cols = img_cols | ||
|
||
def addPadding(self, layer, level): #height, width, level): | ||
|
||
w1, h1 = self.img_cols, self.img_rows | ||
w2, h2 = int(w1/2), int(h1/2) | ||
w3, h3 = int(w2/2), int(h2/2) | ||
w4, h4 = int(w3/2), int(h3/2) | ||
h = [h1,h2,h3,h4] | ||
w = [w1,w2,w3,w4] | ||
|
||
# Target width and height | ||
tw = w[level-1] | ||
th = h[level-1] | ||
|
||
# Source width and height | ||
lsize = keras.int_shape(layer) | ||
sh = lsize[1] | ||
sw = lsize[2] | ||
|
||
pw = (0, tw - sw) | ||
ph = (0, th - sh) | ||
|
||
layer = ZeroPadding2D(padding=(ph,pw),data_format="channels_last")(layer) | ||
|
||
return layer | ||
|
||
def getDeepGyro(self): | ||
|
||
input_blurred = Input((self.img_rows, self.img_cols,3)) | ||
input_blurx = Input((self.img_rows, self.img_cols,1)) | ||
input_blury = Input((self.img_rows, self.img_cols,1)) | ||
|
||
inputs = concatenate([input_blurred,input_blurx,input_blury]) | ||
|
||
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs) | ||
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv1) | ||
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | ||
|
||
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1) | ||
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2) | ||
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | ||
|
||
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2) | ||
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv3) | ||
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | ||
|
||
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool3) | ||
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv4) | ||
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) | ||
|
||
conv5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(pool4) | ||
conv5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(conv5) | ||
|
||
up6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(conv5) | ||
up6 = self.addPadding(up6,level=4) | ||
up6 = concatenate([up6,conv4], axis=3) | ||
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(up6) | ||
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv6) | ||
|
||
up7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv6) | ||
up7 = self.addPadding(up7,level=3) | ||
up7 = concatenate([up7,conv3], axis=3) | ||
conv7 = Conv2D(256, (3, 3), activation='relu', padding='same')(up7) | ||
conv7 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv7) | ||
|
||
up8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv7) | ||
up8 = self.addPadding(up8,level=2) | ||
up8 = concatenate([up8,conv2], axis=3) | ||
conv8 = Conv2D(128, (3, 3), activation='relu', padding='same')(up8) | ||
conv8 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv8) | ||
|
||
up9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv8) | ||
up9 = self.addPadding(up9,level=1) | ||
up9 = concatenate([up9,conv1], axis=3) | ||
conv9 = Conv2D(64, (3, 3), activation='relu', padding='same')(up9) | ||
conv9 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv9) | ||
|
||
conv10 = Conv2D(3, (1, 1), activation='linear')(conv9) | ||
|
||
model = Model(inputs=[input_blurred,input_blurx,input_blury], outputs=conv10) | ||
|
||
#adam = optimizers.Adam(lr=0.00005, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) | ||
#model.compile(optimizer = adam, loss = 'mean_squared_error') | ||
|
||
return model | ||
|
||
def getDeepBlind(self): | ||
|
||
input_blurred = Input((self.img_rows, self.img_cols,3)) | ||
|
||
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_blurred) | ||
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv1) | ||
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | ||
|
||
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1) | ||
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2) | ||
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | ||
|
||
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2) | ||
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv3) | ||
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | ||
|
||
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool3) | ||
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv4) | ||
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) | ||
|
||
conv5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(pool4) | ||
conv5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(conv5) | ||
|
||
up6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(conv5) | ||
up6 = self.addPadding(up6,level=4) | ||
up6 = concatenate([up6,conv4], axis=3) | ||
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(up6) | ||
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv6) | ||
|
||
up7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv6) | ||
up7 = self.addPadding(up7,level=3) | ||
up7 = concatenate([up7,conv3], axis=3) | ||
conv7 = Conv2D(256, (3, 3), activation='relu', padding='same')(up7) | ||
conv7 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv7) | ||
|
||
up8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv7) | ||
up8 = self.addPadding(up8,level=2) | ||
up8 = concatenate([up8,conv2], axis=3) | ||
conv8 = Conv2D(128, (3, 3), activation='relu', padding='same')(up8) | ||
conv8 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv8) | ||
|
||
up9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv8) | ||
up9 = self.addPadding(up9,level=1) | ||
up9 = concatenate([up9,conv1], axis=3) | ||
conv9 = Conv2D(64, (3, 3), activation='relu', padding='same')(up9) | ||
conv9 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv9) | ||
|
||
conv10 = Conv2D(3, (1, 1), activation='linear')(conv9) | ||
|
||
model = Model(inputs=input_blurred, outputs=conv10) | ||
|
||
#adam = optimizers.Adam(lr=0.0000125, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) | ||
#model.compile(optimizer = adam, loss = 'mean_squared_error') | ||
|
||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import os, os.path, errno | ||
from PIL import Image | ||
import numpy as np | ||
from keras.models import Model | ||
from keras.preprocessing.image import array_to_img | ||
from models import modelsClass | ||
|
||
# Put your data to the input folder | ||
inpath = "input" | ||
outpath = "output/DeepBlind" | ||
|
||
try: | ||
os.makedirs(outpath) | ||
except OSError as e: | ||
if e.errno != errno.EEXIST: | ||
raise | ||
|
||
blurred_path = inpath + "/blurred/blurred/" | ||
blurred_names = os.listdir(blurred_path) | ||
|
||
num_images = len(blurred_names) | ||
print("Found %d inputs" %(num_images)) | ||
|
||
for i in range(0, num_images): | ||
|
||
print("Deblurring %s with DeepBlind" %(blurred_names[i])) | ||
|
||
path_blurred = blurred_path + blurred_names[i] | ||
blurred_img = Image.open(path_blurred) | ||
blurred_np = (1./255)*np.array(blurred_img) | ||
|
||
width, height = blurred_img.size | ||
models = modelsClass(height,width) | ||
model = models.getDeepBlind() | ||
model.load_weights("checkpoints/DeepBlind.hdf5") | ||
|
||
x = np.reshape(blurred_np,[1,height,width,3]) | ||
prediction = model.predict(x, batch_size=1,verbose=0,steps=None) | ||
prediction = prediction[0,:,:,:] | ||
|
||
deblurred_img = array_to_img(prediction) | ||
deblurred_img.save(outpath+"/%s"%(blurred_names[i])) | ||
|
||
print("DONE!") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import os, os.path, errno | ||
from PIL import Image | ||
import numpy as np | ||
from keras.models import Model | ||
from keras.preprocessing.image import array_to_img | ||
from models import modelsClass | ||
|
||
# Put your data to the input folder | ||
inpath = "input" | ||
outpath = "output/DeepGyro" | ||
|
||
try: | ||
os.makedirs(outpath) | ||
except OSError as e: | ||
if e.errno != errno.EEXIST: | ||
raise | ||
|
||
blurred_path = inpath + "/blurred/blurred/" | ||
blurx_path = inpath + "/blurx/blurx/" | ||
blury_path = inpath + "/blury/blury/" | ||
|
||
blurred_names = os.listdir(blurred_path) | ||
blurx_names = os.listdir(blurx_path) | ||
blury_names = os.listdir(blury_path) | ||
|
||
num_images = len(blurred_names) | ||
print("Found %d inputs" %(num_images)) | ||
|
||
for i in range(0, num_images): | ||
|
||
print("Deblurring %s with DeepGyro" %(blurred_names[i])) | ||
|
||
path_blurred = blurred_path + blurred_names[i] | ||
path_blurx = blurx_path + blurx_names[i] | ||
path_blury = blury_path + blury_names[i] | ||
|
||
blurred_img = Image.open(path_blurred) | ||
blurx_img = Image.open(path_blurx) | ||
blury_img = Image.open(path_blury) | ||
|
||
blurred_np = (1./255)*np.array(blurred_img) | ||
blurx_np = (1./255)*np.array(blurx_img) | ||
blury_np = (1./255)*np.array(blury_img) | ||
|
||
width, height = blurred_img.size | ||
models = modelsClass(height,width) | ||
model = models.getDeepGyro() | ||
model.load_weights("checkpoints/DeepGyro.hdf5") | ||
|
||
b = np.reshape(blurred_np,[1,height,width,3]) | ||
bx = np.reshape(blurx_np,[1,height,width,1]) | ||
by = np.reshape(blury_np,[1,height,width,1]) | ||
x = [b,bx,by] | ||
|
||
prediction = model.predict(x, batch_size=1,verbose=0,steps=None) | ||
prediction = prediction[0,:,:,:] | ||
|
||
deblurred_img = array_to_img(prediction) | ||
deblurred_img.save(outpath+"/%s"%(blurred_names[i])) | ||
|
||
print("DONE!") |