Type-safe data validation with automatic mock generation for Python dataclasses and Pydantic models. Build robust data models with database-aware validation and generate realistic test data with a single decorator.
- Type-safe database columns: Define database columns with proper validation
- SQL-compliant validation: All numeric types strictly enforce SQL bounds (TINYINT: -128 to 127, etc.)
- Instantiation validation: Types validate at creation time, preventing invalid data from being created
- Serialization/Deserialization: Automatic conversion between Python and SQL types
- Dataclass Integration: Full support for Python dataclasses with validation
- Pydantic Integration: First-class Pydantic support with automatic validation
- Clean API: Simple, intuitive interface for both Pydantic AND dataclasses - just
name: Varchar(50) - Comprehensive Types: STRING (VARCHAR, CHAR, TEXT), NUMERIC (INTEGER, DECIMAL, FLOAT), TEMPORAL (DATE, TIME, TIMESTAMP), and more
- Mock Data Generation: Built-in mock/fake data generation that respects all SQL bounds and constraints
- Constrained Types: Support for min/max constraints on numeric types -
price: PositiveMoney(),age: Integer(ge=0, le=120)
from typing import Annotated
from pydantic import BaseModel, Field, validator
from decimal import Decimal
class Product(BaseModel):
name: Annotated[str, Field(max_length=100)]
price: Annotated[Decimal, Field(decimal_places=2, max_digits=10)]
in_stock: bool = True
@validator('price')
def validate_price(cls, v):
if v < 0:
raise ValueError('Price must be non-negative')
return vfrom pydantic import BaseModel
from mocksmith import Varchar, Money, Boolean
class Product(BaseModel):
name: Varchar(100) # Enforces VARCHAR(100) constraint
price: Money() # Decimal(19,4) - use PositiveMoney() for price > 0
in_stock: Boolean() = True # Flexible boolean parsing✨ Benefits:
- Same clean syntax for both Pydantic and dataclasses
- Automatic SQL constraint validation
- Type conversion (string "99.99" → Decimal)
- Better IDE support and type hints
- Write once, use with either framework
# Standard installation (includes mock generation)
pip install mocksmith
# With Pydantic validation support (recommended)
pip install "mocksmith[pydantic]"Requirements:
- Python 3.8+ (Python 3.10+ recommended for pipe union syntax support)
- Faker (included in standard installation)
- Pydantic 2.0+ (optional, for enhanced validation)
The standard installation includes Faker for mock data generation and custom validation logic. Adding Pydantic provides better performance and integration with Pydantic types.
The library organizes types into two categories:
Core database types are available through factory functions from the main package:
from mocksmith import (
# String types - Factory functions only
Varchar, Char, Text,
# Numeric types - Factory functions only
Integer, DecimalType, Float,
BigInt, SmallInt, TinyInt,
Double, Real, Numeric,
# Temporal types - Factory functions only
Date, Time, DateTime, Timestamp,
# Other types - Factory functions only
Boolean, Binary, VarBinary, Blob,
# Constrained types
PositiveInteger, NonNegativeInteger, NegativeInteger, NonPositiveInteger,
Money, PositiveMoney, NonNegativeMoney, ConstrainedMoney,
ConstrainedDecimal, ConstrainedFloat
)Specialized types for common use cases are available from the specialized submodule:
from mocksmith.specialized import (
# Geographic types
CountryCode, # ISO 3166-1 alpha-2 country codes
City, # City names
State, # State/province names
ZipCode, # Postal codes
# Contact types
PhoneNumber, # Phone numbers
)Note: For email and web types, use Pydantic's built-in types instead:
- Email → Use
pydantic.EmailStr - URL → Use
pydantic.HttpUrlorpydantic.AnyUrl - IP addresses → Use
pydantic.IPvAnyAddress,pydantic.IPv4Address, orpydantic.IPv6Address
This separation keeps the main namespace clean and makes it clear which types are fundamental database types versus application-specific types.
from pydantic import BaseModel
from mocksmith import Varchar, Integer, Boolean, Money
class User(BaseModel):
id: Integer()
username: Varchar(50) # Creates a type class with length 50
email: Varchar(255)
is_active: Boolean() = True
balance: Money() = "0.00"
# Automatic validation and type conversion
user = User(
id=1,
username="john_doe",
email="[email protected]",
is_active="yes", # Converts to True
balance="1234.56" # Converts to Decimal('1234.56')
)The same syntax works with dataclasses! See full examples:
examples/pydantic_example.py- Comprehensive Pydantic examples with all featuresexamples/dataclass_example.py- Comprehensive dataclass examples with all featuresexamples/pydantic_mock_example.py- Mock data generation with Pydantic modelsexamples/dataclass_mock_example.py- Mock data generation with dataclassesexamples/constrained_types_example.py- Constrained types with validation and mock generation
E-commerce Product Model:
from pydantic import BaseModel
from mocksmith import Varchar, Text, Money, Boolean, Timestamp
class Product(BaseModel):
sku: Varchar(20)
name: Varchar(100)
description: Text()
price: Money()
in_stock: Boolean() = True
created_at: Timestamp()User Account with Constraints:
from mocksmith import Integer, PositiveInteger, NonNegativeInteger
class UserAccount(BaseModel):
user_id: PositiveInteger()
age: Integer(ge=13, le=120)
balance_cents: NonNegativeInteger()See complete working examples:
examples/- All example files with detailed documentationexamples/pydantic_example.py- All features including constraintsexamples/dataclass_example.py- All features including constraints
Generate realistic test data automatically with the @mockable decorator:
from dataclasses import dataclass
from mocksmith import Varchar, Integer, Date, mockable
from mocksmith.specialized import PhoneNumber, CountryCode
@mockable
@dataclass
class Address:
street: Varchar(100)
city: Varchar(50)
zip_code: Integer(ge=10000, le=99999)
@mockable
@dataclass
class User:
id: Integer()
username: Varchar(50)
phone: PhoneNumber()
country: CountryCode()
birth_date: Date()
address: Address # Nested dataclass!
# Generate mock instances
user = User.mock()
print(user.username) # "Christina Wells"
print(user.phone) # "(555) 123-4567"
print(user.country) # "US"
print(user.address.city) # "New York" # Nested fields are mocked too!
# With overrides
user = User.mock(username="test_user", country="GB")
# Using builder pattern
user = (User.mock_builder()
.with_username("john_doe")
.with_country("CA")
.build())The same @mockable decorator works with Pydantic models! Mock generation:
- Respects all field constraints (length, format, etc.)
- Generates appropriate mock data for each type
- Supports specialized types with realistic data
- Works with both dataclasses and Pydantic models
- Automatically handles Python Enum types with random value selection
- Supports nested dataclasses - automatically generates mock data for nested structures
- Python 3.10+ pipe syntax support -
field: Type() | Noneworks seamlessly with mocking
MockSmith fully supports Python 3.10+ pipe union syntax for optional fields:
from mocksmith import Varchar, Integer, BigInt, DateTime, Timestamp, mockable
from pydantic import BaseModel
@mockable
class User(BaseModel):
# Required fields
username: Varchar(50)
# Optional fields using pipe syntax - both work identically!
email: Varchar(100) | None # With Annotated
user_id: BigInt() | None # Simple type
age: Integer(ge=0, le=120) | None # With constraints
created_at: DateTime() | None # Temporal type
last_login: Timestamp() | None # With timezone
# Mock generation handles optional fields automatically
user = User.mock()
# Optional fields will randomly be None or have valid values (~20% None, ~80% value)
print(user.user_id) # Could be: 7786676712978416482 or None
print(user.last_login) # Could be: 2021-05-04 02:28:37+00:00 or NoneNote: Both Optional[Type()] and Type() | None syntaxes work identically. Choose based on your Python version and style preference.
See mock examples:
examples/dataclass_mock_example.py- Complete mock examples with dataclasses including enum supportexamples/pydantic_mock_example.py- Complete mock examples with Pydantic including enum support and built-in typesexamples/pipe_syntax_example.py- Python 3.10+ pipe syntax examples with optional fields
Important: MockSmith uses factory functions exclusively. The old pattern of importing classes directly (VARCHAR, INTEGER, etc.) is no longer supported.
from mocksmith import Varchar, Integer, Boolean # Factory functions
# Factory functions create type classes for use in annotations
UsernameType = Varchar(30, min_length=3) # Returns a type class
class User(BaseModel):
username: UsernameType # Use the type class
# Or inline:
email: Varchar(100, to_lower=True) # Factory function inline
age: Integer(gt=0, le=120)
active: Boolean()# ❌ OLD PATTERN (NO LONGER WORKS - REMOVED)
from mocksmith import VARCHAR # This import fails now
varchar_type = VARCHAR(30) # Would create instance "30" - WRONG!
# ✅ NEW PATTERN (THE ONLY WAY)
from mocksmith import Varchar # Factory function
UsernameType = Varchar(30) # Creates type class - CORRECT!from typing import Optional
from pydantic import BaseModel
from mocksmith import Integer, Varchar, Money, Boolean, PositiveInteger, NonNegativeInteger
from decimal import Decimal
# Pattern 1: Direct usage (Recommended - cleanest syntax)
class Product(BaseModel):
id: Integer()
name: Varchar(100)
price: Money()
in_stock: Boolean() = True
# Pattern 2: With constraints
class ConstrainedModel(BaseModel):
age: Integer(ge=0, le=120) # Age between 0-120
quantity: Integer(gt=0) # Positive quantity
discount: Integer(ge=0, le=100, multiple_of=5) # 0-100%, multiples of 5
# Pattern 3: Factory functions with constraints
class ConstrainedProduct(BaseModel):
sku: Varchar(20, to_upper=True) # Auto uppercase
name: Varchar(100, min_length=3)
price: DecimalType(10, 2, gt=0) # precision=10, scale=2, >0
# Pattern 4: Constrained types (common patterns)
class UserAccount(BaseModel):
user_id: PositiveInteger() # > 0
balance: NonNegativeInteger() # >= 0
# Pattern 5: Optional fields
class OptionalModel(BaseModel):
required_field: Varchar(50)
optional_field: Optional[Varchar(50)] = None # Can be None (traditional syntax)
optional_new: Varchar(50) | None = None # Can be None (Python 3.10+ pipe syntax)
with_default: Boolean() = True # Has default value
# All patterns can be mixed in the same model!from dataclasses import dataclass
from typing import Optional
from decimal import Decimal
from mocksmith import Integer, Varchar, Money, Text
@dataclass
class Product:
# Same syntax works, but NO validation occurs!
id: Integer()
name: Varchar(100)
price: Money() = Decimal("0.00")
optional_field: Optional[Text()] = None
# WARNING: Dataclasses don't validate!
product = Product(
id=999999999999, # Accepts invalid values!
name="x" * 1000, # No length check!
price="invalid" # No type check!
)✅ DO USE:
field: Varchar(50)- Factory functions for type creationfield: Integer(gt=0)- Factory functions with constraintsfield: Optional[Varchar(50)] = None- For nullable fields (traditional syntax)field: Varchar(50) | None- For nullable fields (Python 3.10+ pipe syntax)- Pydantic
BaseModelwhen you need validation - Constrained types like
PositiveInteger()for common patterns
❌ DON'T USE (Removed):
from mocksmith import VARCHAR- Direct class imports removedVARCHAR(30)- Would create instance "30", not a type!- Plain dataclasses if you need validation (use Pydantic instead)
All numeric types enforce SQL bounds and validate at instantiation:
- TinyInt: -128 to 127 (8-bit)
- SmallInt: -32,768 to 32,767 (16-bit)
- Integer: -2,147,483,648 to 2,147,483,647 (32-bit)
- BigInt: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (64-bit)
Optional fields properly handle None values with both traditional and modern syntax:
from typing import Optional
class User(BaseModel):
name: Varchar(50) # Required
nickname: Optional[Varchar(30)] = None # Optional (traditional syntax)
bio: Varchar(200) | None = None # Optional (Python 3.10+ pipe syntax)
user = User(name="John", nickname=None, bio=None) # ✓ Valid
# Both syntaxes work the same way - choose based on your Python version
# Python 3.10+ supports both, but pipe syntax is more conciseMockSmith types work seamlessly with Python's Literal type for strict value constraints:
from typing import Literal
from pydantic import BaseModel
from mocksmith import Varchar, Integer, mockable
@mockable
class ServerConfig(BaseModel):
environment: Literal["dev", "staging", "prod"]
status_code: Literal[200, 301, 404, 500]
port: Integer(ge=1024, le=65535)
log_level: Literal[0, 1, 2, 3, 4, 5] # 0=OFF, 5=TRACE
# Validation enforces Literal constraints
config = ServerConfig(
environment="prod", # ✓ Valid
status_code=200, # ✓ Valid
port=8080, # ✓ Valid (within range)
log_level=2 # ✓ Valid
)
# Mock generation respects Literal values
mock = ServerConfig.mock()
# mock.environment will be one of: "dev", "staging", "prod"
# mock.status_code will be one of: 200, 301, 404, 500The library provides a clean, Pythonic interface for defining database types:
String Types:
Varchar(length)→ Variable-length stringChar(length)→ Fixed-length stringText()→ Large text fieldString→ Alias for Varchar
Numeric Types:
Integer()→ 32-bit integer (-2,147,483,648 to 2,147,483,647)BigInt()→ 64-bit integer (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)SmallInt()→ 16-bit integer (-32,768 to 32,767)TinyInt()→ 8-bit integer (-128 to 127)DecimalType(precision, scale)→ Fixed-point decimalNumeric(precision, scale)→ Alias for DecimalTypeMoney()→ Alias for Decimal(19, 4)Float()→ Floating point (generates FLOAT SQL type)Real()→ Floating point (generates REAL SQL type, typically single precision in SQL)Double()→ Double precision
All numeric types:
- Enforce SQL bounds at instantiation (e.g.,
TinyInt(200)raises ValueError) - Generate mock data within valid ranges (e.g.,
TinyInt(gt=5)generates 6-127, not > 127) - Support constraints (gt, ge, lt, le, multiple_of)
Constrained Numeric Types:
PositiveInteger()→ Integer > 0NegativeInteger()→ Integer < 0NonNegativeInteger()→ Integer ≥ 0NonPositiveInteger()→ Integer ≤ 0ConstrainedInteger(ge=x, le=y, multiple_of=z)→ Custom constraintsConstrainedBigInt(...)→ Constrained 64-bit integerConstrainedSmallInt(...)→ Constrained 16-bit integerConstrainedTinyInt(...)→ Constrained 8-bit integer
Temporal Types:
Date()→ Date onlyTime()→ Time onlyTimestamp()→ Date and time with timezoneDateTime()→ Date and time without timezone
Other Types:
Boolean()/Bool()→ Boolean with flexible parsingBinary(length)→ Fixed binaryVarBinary(max_length)→ Variable binaryBlob()→ Large binary object
Mocksmith now supports automatic mock generation for Pydantic's built-in types:
from pydantic import BaseModel, EmailStr, HttpUrl, IPvAnyAddress, conint, constr
from mocksmith import mockable
@mockable
class ServerConfig(BaseModel):
hostname: constr(min_length=1, max_length=253)
ip_address: IPvAnyAddress
port: conint(ge=1, le=65535)
api_url: HttpUrl
admin_email: EmailStr
# Generate mock with Pydantic types
config = ServerConfig.mock()
print(config.ip_address) # IPv4Address('192.168.1.100')
print(config.api_url) # https://example.com
print(config.admin_email) # [email protected]Tip: For types that have Pydantic equivalents, prefer using Pydantic's built-in types:
- Use
EmailStrinstead ofmocksmith.specialized.Email - Use
HttpUrlorAnyUrlinstead ofmocksmith.specialized.URL - Use
IPvAnyAddress,IPv4Address, orIPv6Addressfor IP addresses
While Pydantic types can be used as type annotations in dataclasses, there are important limitations:
from dataclasses import dataclass
from pydantic import EmailStr, HttpUrl, conint
@dataclass
class ServerConfig:
hostname: str
email: EmailStr # Works as type hint only
port: conint(ge=1, le=65535) # No validation!
# This creates an instance WITHOUT validation
server = ServerConfig(
hostname="api.example.com",
email="invalid-email", # Not validated!
port=99999 # Out of range but accepted!
)Key Points:
- Pydantic types in dataclasses serve as type hints only
- No automatic validation occurs
- Mock generation works but produces regular Python types (str, int, etc.)
- For validation, use Pydantic's BaseModel instead
See the Pydantic types limitations section in examples/dataclass_example.py for a complete comparison.
The @mockable decorator supports automatic mock generation for the following Pydantic types:
HttpUrl- Generates valid HTTP/HTTPS URLsAnyHttpUrl- Generates any HTTP scheme URLsEmailStr- Generates valid email addressesIPvAnyAddress- Generates IPv4 or IPv6 addresses (80% IPv4, 20% IPv6)IPvAnyInterface- Generates IP addresses with CIDR notationIPvAnyNetwork- Generates IP network addresses
PositiveInt- Integers > 0NegativeInt- Integers < 0NonNegativeInt- Integers >= 0NonPositiveInt- Integers <= 0PositiveFloat- Floats > 0NegativeFloat- Floats < 0NonNegativeFloat- Floats >= 0NonPositiveFloat- Floats <= 0
UUID1,UUID3,UUID4,UUID5- Generates UUIDs (currently all as UUID4)SecretStr- Generates password-like stringsJson- Generates valid JSON strings
FutureDate- Generates dates in the futurePastDate- Generates dates in the pastFutureDatetime- Generates datetimes in the futurePastDatetime- Generates datetimes in the past
conint(ge=1, le=100)- Integers with min/max constraintsconfloat(ge=0.0, le=1.0)- Floats with min/max constraintsconstr(min_length=1, max_length=50)- Strings with length constraintsconstr(pattern=r"^[A-Z]{3}[0-9]{3}$")- Strings matching regex patterns (limited support)conlist(item_type, min_length=1, max_length=10)- Lists with constraints
from pydantic import BaseModel, EmailStr, HttpUrl, conint, PositiveInt
from mocksmith import mockable
@mockable
class UserProfile(BaseModel):
user_id: PositiveInt
email: EmailStr
website: HttpUrl
age: conint(ge=18, le=120)
# Generate mock data
user = UserProfile.mock()
print(user.email) # "[email protected]"
print(user.website) # "https://example.com"
print(user.age) # 42 (between 18-120)Note: When using Pydantic types in dataclasses (not BaseModel), the types work as annotations only without validation. The mock generation still works but produces regular Python types.
When @mockable encounters an unsupported type, it attempts to handle it intelligently:
- Common types (Path, Set, FrozenSet) - Now supported with appropriate mock values
- Auto-instantiable types - Tries to create instances with
(),None,"", or0 - Truly unsupported types - Returns
Nonewith a warning to help identify gaps in type support
from dataclasses import dataclass
from pathlib import Path
from typing import Set, FrozenSet
from mocksmith import mockable
@mockable
@dataclass
class Config:
config_path: Path # ✓ Generates Path('/tmp/mock_file.txt')
data_dir: Path # ✓ Smart naming: Path('/tmp/mock_directory')
tags: Set[str] # ✓ Generates {'tag1', 'tag2', ...}
frozen_tags: FrozenSet[int] # ✓ Generates frozenset({1, 2, 3})
config = Config.mock()
# All fields get appropriate mock values!class CustomType:
def __init__(self, required_arg):
# Cannot be auto-instantiated
pass
@mockable
@dataclass
class Example:
name: str # ✓ Supported
custom_required: CustomType # ⚠️ Warning issued, returns None
custom_optional: Optional[CustomType] = None # ⚠️ Warning issued (if attempted), returns None
# Console output:
# UserWarning: mocksmith: Unsupported type 'CustomType' for field 'custom_required'.
# Returning None. Consider making this field Optional or providing a mock override.Important Notes:
- All unsupported types trigger warnings - This helps identify gaps in mocksmith's type support
- Warnings help improve mocksmith - If you encounter warnings, please file an issue on GitHub
- Optional fields - May show warnings ~80% of the time (when generation is attempted)
- Override unsupported types - Use
mock()with overrides:Example.mock(custom_required=CustomType('value')) - Pydantic models - Make unsupported fields
Optionalto avoid validation errors
Python's Optional type indicates fields that can be None:
from typing import Optional
from pydantic import BaseModel
from mocksmith import Varchar, Integer, Text
class Example(BaseModel):
# Required field
required_field: Varchar(50)
# Optional field (can be None)
optional_field: Optional[Varchar(50)] = None
# Field with default value
status: Varchar(20) = "active"Best Practice: For optional fields, use Optional[Type] with = None:
bio: Optional[Text()] = None # Clear and explicit
phone: Optional[Varchar(20)] = None # Optional field with no defaultfrom pydantic import BaseModel
from mocksmith import Money, Boolean, Date, Timestamp
class Order(BaseModel):
# String to Decimal conversion
total: Money()
# Flexible boolean parsing
is_paid: Boolean()
# String to date conversion
order_date: Date()
# String to datetime conversion
created_at: Timestamp(with_timezone=False)
# All these string values are automatically converted
order = Order(
total="99.99", # → Decimal('99.99')
is_paid="yes", # → True
order_date="2023-12-15", # → date(2023, 12, 15)
created_at="2023-12-15T10:30:00" # → datetime
)from pydantic import BaseModel, field_validator
from mocksmith import Varchar, Integer, Money
class Product(BaseModel):
name: Varchar(50)
price: Money()
quantity: Integer()
@field_validator('price')
def price_must_be_positive(cls, v):
if v <= 0:
raise ValueError('Price must be positive')
return v
@field_validator('quantity')
def quantity_non_negative(cls, v):
if v < 0:
raise ValueError('Quantity cannot be negative')
return vfrom pydantic import BaseModel, ConfigDict
from mocksmith import Varchar, Money, Timestamp
class StrictModel(BaseModel):
model_config = ConfigDict(
# Validate on assignment
validate_assignment=True,
# Use Enum values
use_enum_values=True,
# Custom JSON encoders
json_encoders={
Decimal: str,
datetime: lambda v: v.isoformat()
}
)
name: Varchar(100)
price: Money()
updated_at: Timestamp()For complete working examples, see the examples/ directory:
-
dataclass_example.py- Comprehensive dataclass examples including:- All data types (String, Numeric, Date/Time, Binary, Boolean)
- Constrained numeric types (PositiveInteger, NonNegativeInteger, etc.)
- Custom constraints (min_value, max_value, multiple_of)
- TINYINT usage for small bounded values
- REAL vs FLOAT distinction
- SQL serialization
- Validation and error handling
-
pydantic_example.py- Comprehensive Pydantic examples including:- All data types with automatic validation
- Field validators and computed properties
- Constrained types with complex business logic
- JSON serialization with custom encoders
-
dataclass_mock_example.py- Mock data generation examples:- Using
@mockabledecorator with dataclasses - Generating mock instances with
.mock() - Override specific fields
- Type-safe builder pattern
- Specialized types (Email, CountryCode, etc.)
- Using
-
pydantic_mock_example.py- Mock data generation with Pydantic:- Using
@mockabledecorator with Pydantic models - Same mock API as dataclasses
- Automatic validation of generated data
- Specialized types with DBTypeValidator
- Model configuration and validation on assignment
- TINYINT and REAL type usage
- Boolean type conversions
- Using
-
constrained_types_example.py- Constrained types with validation:- PositiveMoney, NonNegativeMoney, ConstrainedMoney usage
- ConstrainedDecimal with precision and range constraints
- ConstrainedFloat for percentages and probabilities
- Mock generation respecting all constraints
- Validation examples showing error handling
- Builder pattern with constrained types
from dataclasses import dataclass
from typing import Optional
from datetime import datetime, date
from decimal import Decimal
from mocksmith import Varchar, Integer, Date, DecimalType, Text, BigInt, Timestamp
@dataclass
class Customer:
customer_id: Integer()
first_name: Varchar(50)
last_name: Varchar(50)
email: Varchar(100)
phone: Optional[Varchar(20)]
date_of_birth: Optional[Date()]
@dataclass
class Order:
order_id: BigInt()
customer_id: Integer()
order_date: Timestamp(with_timezone=False)
total_amount: DecimalType(12, 2)
status: Varchar(20)
notes: Optional[Text()]
# Create instances
customer = Customer(
customer_id=1,
first_name="Jane",
last_name="Smith",
email="[email protected]",
phone="+1-555-0123",
date_of_birth=date(1990, 5, 15)
)
order = Order(
order_id=1001,
customer_id=1,
order_date=datetime(2023, 12, 15, 14, 30, 0),
total_amount=Decimal("299.99"),
status="pending",
notes="Rush delivery requested"
)
# Convert to SQL-ready format
print(order.to_sql_dict())For more complete examples including financial systems, authentication, and SQL testing integration,
see the examples/ directory.
Plain dataclasses don't provide validation for mocksmith types. For validation, use Pydantic BaseModel:
from pydantic import BaseModel
from mocksmith import SmallInt
class Config(BaseModel): # Use BaseModel for validation
hour: SmallInt(ge=0, le=23)
# Validation happens automatically
try:
config = Config(hour=24) # Raises ValidationError
except ValidationError as e:
print(f"Validation error: {e}")
config = Config(hour=12) # Works finefrom pydantic import BaseModel
class CustomProduct(BaseModel):
sku: Varchar(20) # Required field
name: Varchar(100) # Required field
description: Optional[Varchar(500)] = None # Optional field# Integer types with range validation
small_value = SMALLINT()
small_value.validate(32767) # OK
# small_value.validate(32768) # Raises ValueError - out of range
# Decimal with precision
money = DECIMAL(19, 4)
money.validate("12345.6789") # OK
# money.validate("12345.67890") # Raises ValueError - too many decimal places
# Time with precision
timestamp = TIMESTAMP(precision=0) # No fractional seconds
timestamp.validate("2023-12-15T10:30:45.123456") # Microseconds will be truncated
# Boolean accepts various formats
bool_type = BOOLEAN()
bool_type.deserialize("yes") # True
bool_type.deserialize("1") # True
bool_type.deserialize("false") # False
bool_type.deserialize(0) # FalseImportant: All numeric types in mocksmith strictly enforce SQL bounds and validate at instantiation time. For example, TinyInt enforces the TINYINT range of -128 to 127, preventing invalid data from being created or generated.
The library provides specialized numeric types with built-in constraints for common validation scenarios:
from mocksmith import Integer, PositiveInteger, NonNegativeInteger
# Enhanced Integer functions - no constraints = standard type
id: Integer() # Standard 32-bit integer
quantity: Integer(ge=0) # With constraints (same as NonNegativeInteger)
discount: Integer(ge=0, le=100) # Percentage 0-100
price: Integer(gt=0) # Same as PositiveInteger()
# Specialized constraint types
id: PositiveInteger() # > 0
quantity: NonNegativeInteger() # >= 0For complete examples with both dataclasses and Pydantic, see:
examples/dataclass_example.py- All constraint examples with dataclassesexamples/pydantic_example.py- All constraint examples with Pydantic
Available Constraint Options:
# Enhanced Integer functions - no constraints = standard type
Integer() # Standard 32-bit integer
Integer(ge=0) # With constraints
Integer(gt=0) # Shortcut for > 0
BigInt() # Standard 64-bit integer
BigInt(ge=0, le=1000000) # With constraints
SmallInt() # Standard 16-bit integer
SmallInt(multiple_of=10) # With constraints
# Specialized constraint types
PositiveInteger() # > 0
NegativeInteger() # < 0
NonNegativeInteger() # >= 0
NonPositiveInteger() # <= 0
# Full constraint options
Integer(
gt=10, # Value must be greater than 10
ge=10, # Value must be greater than or equal to 10
lt=100, # Value must be less than 100
le=100, # Value must be less than or equal to 100
multiple_of=5, # Must be divisible by this
)mocksmith provides constrained versions of Money and Decimal types using Pydantic's constraint system:
from mocksmith import (
ConstrainedMoney, PositiveMoney, NonNegativeMoney,
ConstrainedDecimal, ConstrainedFloat
)
# Money with constraints
price: PositiveMoney() # > 0
balance: NonNegativeMoney() # >= 0
discount: ConstrainedMoney(ge=0, le=100) # 0-100 range
payment: ConstrainedMoney(gt=0, le=10000) # 0 < payment <= 10000
# Decimal with precision and constraints
weight: ConstrainedDecimal(10, 2, gt=0) # Positive weight, max 10 digits, 2 decimal places
temperature: ConstrainedDecimal(5, 2, ge=-273.15) # Above absolute zero
# Float with constraints
percentage: ConstrainedFloat(ge=0.0, le=1.0) # 0-1 range
rate: ConstrainedFloat(gt=0, lt=0.5) # 0 < rate < 0.5These constrained types:
- Work seamlessly with Pydantic validation
- Generate appropriate mock data respecting constraints
- Provide the same clean API as other mocksmith types
- Fall back gracefully if Pydantic is not available
Example Usage:
from pydantic import BaseModel
from mocksmith import mockable, PositiveMoney, NonNegativeMoney, ConstrainedMoney, ConstrainedFloat
@mockable
class Order(BaseModel):
subtotal: PositiveMoney() # Must be > 0
discount: ConstrainedMoney(ge=0, le=50) # 0-50 range
tax: NonNegativeMoney() # >= 0
discount_rate: ConstrainedFloat(ge=0, le=0.3) # 0-30%
# Validation works
order = Order(
subtotal="100.00", # ✓ Converts to Decimal
discount="25.00", # ✓ Within 0-50 range
tax="8.50", # ✓ Non-negative
discount_rate=0.15 # ✓ 15% is within 0-30%
)
# Mock generation respects constraints
mock_order = Order.mock()
assert mock_order.subtotal > 0
assert 0 <= mock_order.discount <= 50
assert mock_order.tax >= 0
assert 0 <= mock_order.discount_rate <= 0.3This version introduces critical breaking changes to simplify the architecture:
- Direct class imports are removed -
from mocksmith import VARCHARno longer works - Only factory functions are available - Use
Varchar(), notVARCHAR() - DBTypeValidator is removed - Types work directly with Pydantic
- DBType base class is removed - V3 pattern is now the only supported approach
- All types now inherit from native Python types (str, int, Decimal, etc.)
- Mock factory uses duck typing - any object with a
.mock()method works as a mock provider - If you subclassed
DBType, migrate to V3 pattern (inherit from native types, implement__get_pydantic_core_schema__)
In previous versions, importing and using VARCHAR(30) would create a type class. In the new simplified pattern, this would create a string instance with value "30" - highly confusing! To prevent this dangerous ambiguity, direct class access has been removed entirely.
# ❌ OLD V2 CODE (No longer works)
from mocksmith import VARCHAR, INTEGER, BOOLEAN
from mocksmith.pydantic_integration import DBTypeValidator
from typing import Annotated
class User(BaseModel):
username: Annotated[str, DBTypeValidator(VARCHAR(30))]
age: Annotated[int, DBTypeValidator(INTEGER())]
active: Annotated[bool, DBTypeValidator(BOOLEAN())]
# ✅ NEW CODE (Clean and simple)
from mocksmith import Varchar, Integer, Boolean
class User(BaseModel):
username: Varchar(30) # Direct usage!
age: Integer()
active: Boolean()| Old Pattern | New Pattern |
|---|---|
from mocksmith import VARCHAR |
from mocksmith import Varchar |
from mocksmith.types.string import VARCHAR |
Not available - use factory functions |
Annotated[str, DBTypeValidator(VARCHAR(30))] |
Varchar(30) |
VARCHAR(30) (creates type) |
Varchar(30) (creates type) |
INTEGER() |
Integer() |
DECIMAL(10, 2) |
DecimalType(10, 2) |
BOOLEAN() |
Boolean() |
DATE() |
Date() |
TIMESTAMP() |
Timestamp() |
- Cleaner API - No more
DBTypeValidatororAnnotatedboilerplate - Type safety - Factory functions always return type classes
- No confusion - Can't accidentally create instances when you mean types
- Better IDE support - Direct type usage improves autocomplete
- Simpler codebase - V3 pattern only, duck typing for extensibility
- More Pythonic - Any object with a
.mock()method can provide mocks (no inheritance required)
- Clone the repository:
git clone https://github.com/gurmeetsaran/mocksmith.git
cd mocksmith- Install Poetry (if not already installed):
curl -sSL https://install.python-poetry.org | python3 -- Install dependencies:
poetry install- Set up pre-commit hooks:
poetry run pre-commit install- Run tests:
make testmake lint- Run linting (ruff + pyright)make format- Format code (black + isort + ruff fix)make test- Run testsmake test-cov- Run tests with coveragemake check-all- Run all checks (lint + format check + tests)make check-consistency- Verify pre-commit, Makefile, and CI are in sync
To ensure your development environment matches CI/CD:
# Check that pre-commit hooks match Makefile and GitHub Actions
make check-consistencyThis will verify that all tools (black, isort, ruff, pyright) are configured consistently across:
- Pre-commit hooks (
.pre-commit-config.yaml) - Makefile commands
- GitHub Actions workflows
MIT