Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 272. Closest Binary Search Tree Value II #272

Open
grandyang opened this issue May 30, 2019 · 1 comment
Open

[LeetCode] 272. Closest Binary Search Tree Value II #272

grandyang opened this issue May 30, 2019 · 1 comment

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

Given a non-empty binary search tree and a target value, find  k  values in the BST that are closest to the target.

Note:

  • Given target value is a floating point.
  • You may assume  k  is always valid, that is:  k ≤ total nodes.
  • You are guaranteed to have only one unique set of  k  values in the BST that are closest to the target.

Example:

Input: root = [4,2,5,1,3], target = 3.714286, and _k_ = 2

    4
   / \
  2   5
 / \
1   3

Output: [4,3]

Follow up:
Assume that the BST is balanced, could you solve it in less than  O ( n ) runtime (where  n  = total nodes)?

 

这道题是之前那道 Closest Binary Search Tree Value 的拓展,那道题只让找出离目标值最近的一个节点值,而这道题让找出离目标值最近的k个节点值,难度瞬间增加了不少,博主最先想到的方法是用中序遍历将所有节点值存入到一个一维数组中,由于二分搜索树的性质,这个一维数组是有序的,然后再在有序数组中需要和目标值最近的k个值就简单的多,参见代码如下:

 

解法一:

class Solution {
public:
    vector<int> closestKValues(TreeNode* root, double target, int k) {
        vector<int> res, v;
        inorder(root, v);
        int idx = 0;
        double diff = numeric_limits<double>::max();
        for (int i = 0; i < v.size(); ++i) {
            if (diff >= abs(target - v[i])) {
                diff = abs(target - v[i]);
                idx = i;
            }
        }
        int left = idx - 1, right = idx + 1;
        for (int i = 0; i < k; ++i) {
            res.push_back(v[idx]);
            if (left >= 0 && right < v.size()) {
                if (abs(v[left] - target) > abs(v[right] - target)) {
                    idx = right;
                    ++right;
                } else {
                    idx = left;
                    --left;
                }
            } else if (left >= 0) {
                idx = left;
                --left;
            } else if (right < v.size()) {
                idx = right;
                ++right;
            }
        }
        return res;
    }
    void inorder(TreeNode *root, vector<int> &v) {
        if (!root) return;
        inorder(root->left, v);
        v.push_back(root->val);
        inorder(root->right, v);
    }
};

 

还有一种解法是直接在中序遍历的过程中完成比较,当遍历到一个节点时,如果此时结果数组不到k个,直接将此节点值加入结果 res 中,如果该节点值和目标值的差值的绝对值小于结果 res 的首元素和目标值差值的绝对值,说明当前值更靠近目标值,则将首元素删除,末尾加上当前节点值,反之的话说明当前值比结果 res 中所有的值都更偏离目标值,由于中序遍历的特性,之后的值会更加的遍历,所以此时直接返回最终结果即可,参见代码如下:

 

解法二:

class Solution {
public:
    vector<int> closestKValues(TreeNode* root, double target, int k) {
        vector<int> res;
        inorder(root, target, k, res);
        return res;
    }
    void inorder(TreeNode *root, double target, int k, vector<int> &res) {
        if (!root) return;
        inorder(root->left, target, k, res);
        if (res.size() < k) res.push_back(root->val);
        else if (abs(root->val - target) < abs(res[0] - target)) {
            res.erase(res.begin());
            res.push_back(root->val);
        } else return;
        inorder(root->right, target, k, res);
    }
};

 

下面这种方法是上面那种方法的迭代写法,原理一模一样,参见代码如下:

 

解法三:

class Solution {
public:
    vector<int> closestKValues(TreeNode* root, double target, int k) {
        vector<int> res;
        stack<TreeNode*> s;
        TreeNode *p = root;
        while (p || !s.empty()) {
            while (p) {
                s.push(p);
                p = p->left;
            }
            p = s.top(); s.pop();
            if (res.size() < k) res.push_back(p->val);
            else if (abs(p->val - target) < abs(res[0] - target)) {
                res.erase(res.begin());
                res.push_back(p->val);
            } else break;
            p = p->right;
        }
        return res;
    }
};

 

在来看一种利用最大堆来解题的方法,堆里保存的一个差值 diff 和节点值的 pair,中序遍历二叉树(也可以用其他遍历方法),然后对于每个节点值都计算一下和目标值之差的绝对值,由于最大堆的性质,diff 大的自动拍到最前面,维护k个 pair,如果超过了k个,就把堆前面大的 pair 删掉,最后留下的k个 pair,将 pair 中的节点值取出存入结果 res 中返回即可,参见代码如下: 

 

解法四:

class Solution {
public:
    vector<int> closestKValues(TreeNode* root, double target, int k) {
        vector<int> res;
        priority_queue<pair<double, int>> q;
        inorder(root, target, k, q);
        while (!q.empty()) {
            res.push_back(q.top().second);
            q.pop();
        }
        return res;
    }
    void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
        if (!root) return;
        inorder(root->left, target, k, q);
        q.push({abs(root->val - target), root->val});
        if (q.size() > k) q.pop();
        inorder(root->right, target, k, q);
    }
};

 

下面的这种方法用了两个栈,pre 和 suc,其中 pre 存小于目标值的数,suc 存大于目标值的数,开始初始化 pre 和 suc 的时候,要分别将最接近目标值的稍小值和稍大值压入 pre 和 suc,然后循环k次,每次比较 pre 和 suc 的栈顶元素,看谁更接近目标值,将其存入结果 res 中,然后更新取出元素的栈,依次类推直至取完k个数返回即可,参见代码如下:

 

解法五:

class Solution {
public:
    vector<int> closestKValues(TreeNode* root, double target, int k) {
        vector<int> res;
        stack<TreeNode*> pre, suc;
        while (root) {
            if (root->val <= target) {
                pre.push(root);
                root = root->right;
            } else {
                suc.push(root);
                root = root->left;
            }
        }
        while (k-- > 0) {
            if (suc.empty() || !pre.empty() && target - pre.top()->val < suc.top()->val - target) {
                res.push_back(pre.top()->val);
                getPredecessor(pre);
            } else {
                res.push_back(suc.top()->val);
                getSuccessor(suc);
            }
        }
        return res;
    }
    void getPredecessor(stack<TreeNode*> &pre) {
        TreeNode *t = pre.top(); pre.pop();
        if (t->left) {
            pre.push(t->left);
            while (pre.top()->right) pre.push(pre.top()->right);
        }
    }
    void getSuccessor(stack<TreeNode*> &suc) {
        TreeNode *t = suc.top(); suc.pop();
        if (t->right) {
            suc.push(t->right);
            while (suc.top()->left) suc.push(suc.top()->left);
        }
    }
};

 

Github 同步地址:

#272

 

类似题目:

Closest Binary Search Tree Value

Binary Tree Inorder Traversal

 

参考资料:

https://leetcode.com/problems/closest-binary-search-tree-value-ii/

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70515/Java-in-order-traversal-1ms-solution

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70511/AC-clean-Java-solution-using-two-stacks

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70549/Clear-Java-Solution-with-one-stack-one-linkedlist

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70503/O(logN)-Java-Solution-with-two-stacks-following-hint

 

LeetCode All in One 题目讲解汇总(持续更新中...)

@LenaShengzhen
Copy link

LenaShengzhen commented May 20, 2021

Using circular array in “解法二”!


   void inorder(TreeNode *root, double target, int k, vector<int> &res, int& pos) {
        if (!root) return;
        inorder(root->left, target, k, res, pos);
        if (res.size() < k) res.push_back(root->val);
        else if (abs(root->val - target) < abs(res[pos] - target)) {
            res[pos] = root->val;
            pos++;
            pos = pos % k;   
         
        } else return;
        inorder(root->right, target, k, res, pos);
    }

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants