Skip to content

Matlab scripts to compute Euler-Lagrange dynamic models of a large number of robot manipulators.

License

Notifications You must be signed in to change notification settings

giusenso/robot-manipulator-dynamics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Robot Manipulator Dynamics

This repository contains Matlab scripts used to compute Euler-Lagrange dynamic models of a large number of robot manipulators.

Euler-Lagrange Dynamics: M(q)*ddq + c(q,dq) + g(q) = u

dynamics_functions contains all the functions needed to compute and display the Euler Lagrange dynamics. In particular:

- moving_frame.m
- kinetic_energy.m
- inertia_matrix.m
- centrifugal_coriolis.m
- factorization.m
- potential_energy.m
- print_dynamics.m

Make sure to setup the Matlab path correctly in order to use this library, or alternatively copy and paste it at the end of your scripts.

Example: PR planar robot

Input data:

%% ROBOT DATA
sigma = [1 0];          % 0 if revolute, 1 if prismatic
r{1} = [q(1); 0; 0];
r{2} = [l(2)*sin(q(2)); -l(2)*cos(q(2)); 0];
gravity = [0; -g0; 0];

picture

Output:

~ Robot Manipulator Dynamics ~

  Developed by Giuseppe Sensolini (github: @giusenso)
  May 2020
  Brief: algorithms for computing Euler-Lagrange dynamics


robot: PR

=== MOVING FRAME ================================
rcm01 =
q1 - d1
      0
      0
 
w1 =
0
0
0
 
vcm1 =
dq1
  0
  0
 
Tcm(1) = (dq1^2*m1)/2
 
__________________________________

rcm02 =
q1 + d2*sin(q2)
    -d2*cos(q2)
              0
 
w2 =
  0
  0
dq2
 
vcm2 =
dq1 + d2*dq2*cos(q2)
      d2*dq2*sin(q2)
                   0
 
Tcm(2) = (m2*d2^2*dq2^2)/2 + m2*cos(q2)*d2*dq1*dq2 + (m2*dq1^2)/2 + (I2zz*dq2^2)/2
 
=== KINETIC ENERGY ==============================

T = (I2zz*dq2^2)/2 + (dq1^2*m1)/2 + (dq1^2*m2)/2 + (d2^2*dq2^2*m2)/2 + d2*dq1*dq2*m2*cos(q2)
 
=== INERTIA MATRIX ==============================

M(q) = 
[      m1 + m2,  d2*m2*cos(q2)]
[d2*m2*cos(q2), m2*d2^2 + I2zz]
 
=== Christhoffel symbols ========================
C(1) = 
[0,              0]
[0, -d2*m2*sin(q2)]
 
C(2) = 
[0, 0]
[0, 0]
 
=== CORIOLIS and CENTRIFUGAL ====================

c(q,dq) = 
-d2*dq2^2*m2*sin(q2)
                   0
 
S(q,dq) = 
[0, -d2*dq2*m2*sin(q2)]
[0,                  0]
 
=== POTENTIAL ENERGY ============================

U = -d2*g0*m2*cos(q2)
 
=== GRAVITY =====================================

g(q) = 
               0
d2*g0*m2*sin(q2)
 
=== ROBOT DYNAMICS ==============================

  - d2*m2*sin(q2)*dq2^2 + ddq1*(m1 + m2) + d2*ddq2*m2*cos(q2) == u1
ddq2*(m2*d2^2 + I2zz) + d2*ddq1*m2*cos(q2) + d2*g0*m2*sin(q2) == u2