A powerful Model Context Protocol (MCP) server that provides persistent, intelligent memory using Elasticsearch with hierarchical categorization and semantic search capabilities.
-
🏷️ Hierarchical Memory Categorization
- 5 category types:
identity,active_context,active_project,technical_knowledge,archived - Automatic category detection with confidence scoring
- Manual reclassification support
- 5 category types:
-
🤖 Intelligent Auto-Detection
- Accumulative scoring system (0.7-0.95 confidence range)
- 23+ specialized keyword patterns
- Context-aware categorization
-
📦 Batch Review System
- Review uncategorized memories in batches
- Approve/reject/reclassify workflows
- 10x faster than individual categorization
-
🔄 Backward Compatible Fallback
- Seamlessly loads v5 uncategorized memories
- No data loss during upgrades
- Graceful degradation
-
🚀 Optimized Context Loading
- Hierarchical priority loading (~30-40 memories vs 117)
- 60-70% token reduction
- Smart relevance ranking
-
💾 Persistent Memory
- Vector embeddings for semantic search
- Session management with checkpoints
- Conversation snapshots
Install directly from PyPI:
pip install elasticsearch-memory-mcp- Python 3.8+
- Elasticsearch 8.0+
# Using Docker (recommended)
docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:8.0.0
# Or install locally
# https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.htmlAdd to ~/.config/Claude/claude_desktop_config.json:
{
"mcpServers": {
"elasticsearch-memory": {
"command": "uvx",
"args": ["elasticsearch-memory-mcp"],
"env": {
"ELASTICSEARCH_URL": "http://localhost:9200"
}
}
}
}Note: If you don't have
uvx, install withpip install uvxor usepython -m elasticsearch_memory_mcpinstead.
claude mcp add elasticsearch-memory uvx elasticsearch-memory-mcp \
-e ELASTICSEARCH_URL=http://localhost:9200If you want to contribute or modify the code:
# Clone repository
git clone https://github.com/fredac100/elasticsearch-memory-mcp.git
cd elasticsearch-memory-mcp
# Create virtual environment
python3 -m venv venv
source venv/bin/activate
# Install in development mode
pip install -e .Then configure MCP pointing to your local installation:
{
"mcpServers": {
"elasticsearch-memory": {
"command": "/path/to/venv/bin/python",
"args": ["-m", "mcp_server"],
"env": {
"ELASTICSEARCH_URL": "http://localhost:9200"
}
}
}
}Save a new memory with automatic categorization.
{
"content": "Fred prefers direct, brutal communication style",
"type": "user_profile",
"importance": 9,
"tags": ["communication", "preference"]
}Loads hierarchical context with:
- Identity memories (who you are)
- Active context (current work)
- Active projects (ongoing)
- Technical knowledge (relevant facts)
Review uncategorized memories in batches.
{
"batch_size": 10,
"min_confidence": 0.6
}Returns suggestions with auto-detected categories and confidence scores.
Apply categorizations in batch after review.
{
"approve": ["id1", "id2"], // Auto-categorize
"reject": ["id3"], // Skip
"reclassify": {"id4": "archived"} // Force category
}Semantic search with filters.
{
"query": "SAE project details",
"limit": 5,
"category": "active_project"
}Batch auto-categorize uncategorized memories.
{
"max_to_process": 50,
"min_confidence": 0.75
}┌─────────────────┐
│ Claude (MCP) │
└────────┬────────┘
│
▼
┌─────────────────────────────┐
│ MCP Server (v6.2) │
│ ┌─────────────────────┐ │
│ │ Auto-Detection │ │
│ │ - Keyword matching │ │
│ │ - Confidence score │ │
│ └─────────────────────┘ │
│ │
│ ┌─────────────────────┐ │
│ │ Batch Review │ │
│ │ - Review workflow │ │
│ │ - Bulk operations │ │
│ └─────────────────────┘ │
└──────────┬──────────────────┘
│
▼
┌──────────────────────────────┐
│ Elasticsearch │
│ ┌────────────────────────┐ │
│ │ memories (index) │ │
│ │ - embeddings (vector) │ │
│ │ - memory_category │ │
│ │ - category_confidence │ │
│ └────────────────────────┘ │
└──────────────────────────────┘
| Category | Description | Examples |
|---|---|---|
| identity | Core identity, values, preferences | "Fred prefers brutal honesty" |
| active_context | Current work, recent conversations | "Working on SAE implementation" |
| active_project | Ongoing projects | "Mirror architecture design" |
| technical_knowledge | Facts, configs, tools | "Elasticsearch index settings" |
| archived | Completed, deprecated, old migrations | "Refactored old auth system" |
"Fred prefere comunicação brutal" → identity (0.9)
"Refatoração do sistema SAE concluída" → archived (0.85)
"Próximos passos: implementar dashboard" → active_context (0.8)
"Fred prefere comunicação brutal. Primeira vez usando este estilo."
→ Match 1: "Fred prefere" (+0.9)
→ Match 2: "primeira vez" (+0.8)
→ Total: 0.95 (normalized)
The v6.2 system includes automatic fallback for v5 memories:
- Uncategorized memories → Loaded via type/tags fallback
- Visual separation → Categorized vs. fallback sections
- Batch review → Categorize old memories efficiently
# Review and categorize v5 memories
review_uncategorized_batch(batch_size=20)
apply_batch_categorization(approve=[...])- Load initial context: ~10-15s (includes embedding model load)
- Save memory: <1s
- Search: <500ms
- Batch review (10 items): ~2s
- Auto-categorize (50 items): ~5s
# Run quick test
python test_quick.py
# Expected output:
# ✅ Elasticsearch connected
# ✅ Context loaded
# ✅ Identity memories found
# ✅ Projects separated from fallback- ✅ Improved auto-detection (0.4 → 0.9 confidence)
- ✅ 23 new specialized keywords
- ✅ Batch review tools (review_uncategorized_batch, apply_batch_categorization)
- ✅ Visual separation (categorized vs fallback)
- ✅ Accumulative confidence scoring
- ✅ Fallback mechanism for uncategorized memories
- ✅ Backward compatibility with v5
- ✅ Memory categorization system
- ✅ Hierarchical context loading
- ✅ Auto-detection with confidence
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Built with Model Context Protocol (MCP)
- Powered by Elasticsearch
- Embeddings by Sentence Transformers
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Made with ❤️ for the Claude ecosystem