Skip to content

dr-joe-wirth/primerForge

Repository files navigation

primerForge

DOI

primerForge

software to identify primers that can be used to distinguish genomes

If you use this software, please cite our article in the Journal of Open Source Software.

Installation

Note

primerForge is incompatible with versions python3.8 and below and python3.12 and above.

pip installation

primerForge can be installed with the following commands:

pip install primerforge
conda install ispcr

pixi installation

Note

Pixi is experimental

To install with Pixi, download pixi.toml and then run the following commands:

pixi shell

conda installation

A conda installation is currently unavailable due to khmer being unsupported. We are actively working to resolve this.

Manual installation

Note

This might take up to ten minutes.

git clone https://github.com/dr-joe-wirth/primerForge.git
conda env create -f primerForge/environment.yml
conda activate primerforge

Docker installation

A Docker image for the latest release is available at DockerHub

Checking installation

If primerForge is installed correctly, then the following command should execute without errors:

primerForge --check_install

If you installed manually, you may need to use the following command instead:

python primerForge.py --check_install

Running unit tests

In order to run unit tests, install primerForge using the instructions above. You will also need to clone the repository if you haven't already:

git clone https://github.com/dr-joe-wirth/primerForge.git

Once installed and cloned, run the following commands to run the unit tests:

python3 -m unittest discover -s ./primerForge/bin/unit_tests/ -p "*_test.py"

Usage

Basic usage

usage:
    primerForge [-ioBubfpgtrdnkvh]

required arguments:
    -i, --ingroup          [file] ingroup filename or a file pattern inside double-quotes (eg."*.gbff")

optional arguments:
    -o, --out              [file] output filename for primer pair data (default: results.tsv)
    -B, --bed_file         [file] output filename for primer data in BED file format (default: primers.bed)
    -u, --outgroup         [file] outgroup filename or a file pattern inside double-quotes (eg."*.gbff")
    -b, --bad_sizes        [int,int] a range of PCR product lengths that the outgroup cannot produce (default: same as '--pcr_prod')
    -f, --format           [str] file format of the ingroup and outgroup [genbank|fasta] (default: genbank)
    -p, --primer_len       [int(s)] a single primer length or a range specified as 'min,max'; (minimum 10) (default: 16,20)
    -g, --gc_range         [float,float] a min and max percent GC specified as a comma separated list (default: 40.0,60.0)
    -t, --tm_range         [float,float] a min and max melting temp (°C) specified as a comma separated list (default: 55.0,68.0)
    -r, --pcr_prod         [int(s)] a single PCR product length or a range specified as 'min,max' (default: 120,2400)
    -d, --tm_diff          [float] the maximum allowable Tm difference °C between a pair of primers (default: 5.0)
    -n, --num_threads      [int] the number of threads for parallel processing (default: 1)
    -k, --keep             keep intermediate files (default: False)
    -v, --version          print the version
    -h, --help             print this message

    --check_install        check installation
    --debug                run in debug mode
    --advanced             print advanced options

Advanced options

primer3 parameters

--primer3_mv_conc      [float] monovalent cation concentration (mM) (default: 50.0)
--primer3_dv_conc      [float] divalent cation concentration (mM) (default: 1.5)
--primer3_dntp_conc    [float] dNTP concentration (mM) (default: 0.6)
--primer3_dna_conc     [float] template DNA concentration (nM) (default: 50.0)
--primer3_temp_c       [float] simulation temp (°C) for ΔG (default: 37.0)
--primer3_max_loop     [int] maximum size (bp) of loops in primer secondary structures (default: 30)

isPcr parameters

--isPcr_minGood        [int] minimum size (bp) where there must be 2 matches for each mismatch (default: 6)
--isPcr_minPerfect     [int] minimum size (bp) of perfect match at 3' end of primer (default: 8)
--isPcr_tileSize       [int] the size of match that triggers an alignment (default: 10)

Additional primerForge parameters

--temp_tolerance       [float] minimum number of degrees (°C) below primer Tm allowed for secondary structure Tm (default: 5.0)
--max_repeats          [int] maximum allowed length (bp) of homopolymers (repeats) in primer sequences (default: 4)
--bin_size             [int] maximum allowed length (bp) of contiguous regions of overlapping primers (bins) (default: 64)

Results

results.tsv

The results produced by primerForge list one primer pair per line, and these pairs are sorted based on the following criteria (in order of importance):

  • largest difference from the ingroup PCR product range for outgroup PCR products
  • lowest number of outgroup PCR products
  • lowest G+C difference between the pair
  • lowest Tm difference between the pair
  • lowest Tm for heterodimers
  • lowest Tm (sum) for homodimers
  • lowest Tm (sum) for hairpins
  • lowest variance in ingroup PCR product sizes
  • largest median ingroup PCR product size

See the example for details about the file format.

primers.bed

The BED file produced by primerForge has the following format:

column number title definition
1 contig the name of the contig
2 start the start coordinate of the primer
3 end the end coordinate of the primer (exclusive)
4 sequence the sequence of the primer
5 pair number an integer that links forward and reverse primers; overloading the "score" field traditionally found in BED file format
6 strand the DNA strand ('+' or '-')

Workflow

flowchart TB
    ingroup[/"ingroup genomes"/]
    ingroup --> A

    %% get unique kmers
    subgraph A["for each genome"]
        uniqKmer["get unique kmers"]
    end

    %% get shared kmers
    sharedKmers(["shared kmers"])
    uniqKmer -- intersection --> sharedKmers

    %% get candidate kmers
    subgraph B["for each genome"]
        subgraph B0["for each kmer start position"]
            subgraph B1["pick one kmer"]
                GC{"GC in
                 range?"}
                Tm{"Tm in
                range?"}
                homo{"repeats
                ≤ 3bp?"}
                hair{"no hairpins?"}
                dime{"no homo-
                dimers?"}
                GC-->Tm-->homo-->hair-->dime
            end
        end
    end

    %% connections up to candidate kmers
    sharedKmers --> B
    dump1[/"checkpoint"/]
    sharedKmers --> dump1
    candidates(["unique, shared kmers; one per start position"])
    dime --> candidates

    %% get primer pairs
    subgraph C["for one genome"]
        bin1["bin overlapping kmers (64bp max)"]
        bin2["remove kmers that are
        substrings of other kmers"]
        bin3["get bin pairs"]

        %% evaluate one kmer pair
        subgraph C0["for each bin pair"]
            size{"is PCR
            size ok?"}
            subgraph C1["for each primer pair"]
                prime{"is 3' end
                G or C?"}
                temp{"is Tm
                difference ok?"}
                gc2{"is GC
                difference ok?"}
                hetero{"no hetero-
                dimers?"}
            end
            size --> C1
        end
    end

    candPair(["candidate primer pairs"])
    allSharePair(["all shared primer pairs"])

    %% get shared primer pairs
    subgraph D["for each candidate primer pair"]
        subgraph D0["for each other genome"]
            pcr{"is PCR
            size ok?"}
        end
    end

    bin1 --> bin2
    bin2 --> bin3
    bin3 --> C0
    prime --> temp --> gc2 --> hetero --> candPair
    candPair --> D
    pcr --> allSharePair

    %% one pair per bin pair
    subgraph E["for each bin pair"]
        keep["keep only one primer pair"]
    end
    
    selectedSharePair(["selected shared
                        primer pairs"])
    dump2[/"checkpoint"/]
    dump3[/"checkpoint"/]

    candidates --> dump2
    candidates --> C
    allSharePair --> E
    keep --> selectedSharePair
    selectedSharePair --> dump3

    %% outgroup removal
    outgroup[/"outgroup genomes"/]

    subgraph F["for each outgroup genome"]
        subgraph F0["for each primer pair"]
            ogsize{"PCR size outside
            disallowed range?"}
        end
    end

    selectedSharePair --> F0
    outgroup --> F
    
    noout(["primer pairs absent from outgroup"])
    ogsize --> noout
    noout --> dump4
    dump4[/"checkpoint"/]

    ispcr["filter pairs using isPcr"]
    final(["final primer pairs"])
    dump5[/"checkpoint"/]
    write[/"sort pairs and
            write to files"/]

    noout --> ispcr
    ispcr --> final
    final --> dump5
    final --> write
Loading

Example using Mycloplasma mycoides genomes

This example assumes you have already installed primerForge as described above.

Motivation

In this example, we will use primerForge to find pairs of primers between 18bp and 24bp that can be used to differentiate three strains of Mycoplasma mycoides subspecies mycoides (the "ingroup") from two strains of Mycoplasma mycoides subspecies capri (the "outgroup"). The primer pairs identified by primerForge are predicted to produce a single PCR product between 500bp and 2000bp in the ingroup. These same primer pairs are predicted to produce PCR products <300bp, >3000bp, or no PCR products at all in the outgroup.

Preparing the workspace

In order to get started, create a directory called mycoplasma_test and move into it:

mkdir ./mycoplasma_test
cd ./mycoplasma_test

Next, download the following Mycoplasma mycoides genomes using the following commands:

curl ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/034/305/GCF_003034305.1_ASM303430v1/GCF_003034305.1_ASM303430v1_genomic.gbff.gz | gzip -d > ./i1.gbff
curl ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/034/275/GCF_003034275.1_ASM303427v1/GCF_003034275.1_ASM303427v1_genomic.gbff.gz | gzip -d > ./i2.gbff
curl ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/034/345/GCF_003034345.1_ASM303434v1/GCF_003034345.1_ASM303434v1_genomic.gbff.gz | gzip -d > ./i3.gbff
curl ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/900/489/555/GCF_900489555.1_MMC68/GCF_900489555.1_MMC68_genomic.gbff.gz | gzip -d > ./o1.gbff
curl ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/018/389/745/GCF_018389745.1_ASM1838974v1/GCF_018389745.1_ASM1838974v1_genomic.gbff.gz | gzip -d > ./o2.gbff

If you cannot download the genbank files using curl, you can download them manually from NCBI by replacing ftp:// with http:// and copying and pasting each address into your web browser (eg. http://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/034/305/GCF_003034305.1_ASM303430v1/GCF_003034305.1_ASM303430v1_genomic.gbff.gz) and then using gzip -d on the downloaded file to uncompress it. Finally, be sure to rename each file as shown above (eg. mv GCF_003034305.1_ASM303430v1_genomic.gbff i1.gbff).

Running primerForge

We will use the following flags to specify specific parameters for this example:

  • The --ingroup and --outgroup flags are both file patterns for the ingroup and outgroup genomes, respectively. It is important that this pattern is enclosed in double-quotes as shown below.
  • The --pcr_prod flag indicates what sizes we want for ingroup products (500bp to 2,000bp)
  • The --bad_sizes flag indicates what sizes we do not want for outgroup products (300bp to 3,000bp).
  • The --primer_len flag indicates what length our primers can be (18bp to 24bp)

You can get a list of all available flags using the command primerForge --help.

Run primerForge using the following command (requires at least 2 Gb of RAM):

primerForge --ingroup "./i*gbff" --outgroup "./o*gbff" --pcr_prod 500,2000 --bad_sizes 300,3000 --primer_len 18,24

After running the command, you should see something like this printed to the screen:

dumping Parameters to 'primerforge_46f54ae4b9e44b928230774ca5620d6d/parameters.p' ... done 00:00:00.49
identifying kmers suitable for use as primers in all 3 ingroup genome sequences
    getting shared ingroup kmers that appear once in each genome ... done 00:01:36.15
    dumping shared kmers to 'primerforge_46f54ae4b9e44b928230774ca5620d6d/sharedKmers.p' ... done 00:00:11.22
    evaluating 2430140 kmers ... done 00:01:51.73
    identified 30413 candidate kmers
    dumping candidate kmers to 'primerforge_46f54ae4b9e44b928230774ca5620d6d/candidates.p' ... done 00:00:01.55
done 00:03:42.94
identifying pairs of primers found in all ingroup sequences ... done 00:00:11.62
    identified 16050 primer pairs shared in all ingroup sequences
    dumping unfiltered pairs to 'primerforge_46f54ae4b9e44b928230774ca5620d6d/pairs.p' ... done 00:00:00.56
removing primer pairs present in the outgroup sequences
    getting outgroup PCR products ... done 00:00:01.03
    filtering primer pairs ... done 00:00:00.54
    processing outgroup results ... done 00:00:00.54
    removed 5905 pairs present in the outgroup (10145 pairs remaining)
    dumping filtered pairs to 'primerforge_46f54ae4b9e44b928230774ca5620d6d/pairs_noOutgroup.p' ... done 00:00:00.54
validating primer pairs with isPcr ... done 00:00:03.44
    removed 3659 pairs not validated by isPcr (6486 pairs remaining)
    dumping validated pairs to 'primerforge_46f54ae4b9e44b928230774ca5620d6d/pairs_noOutgroup_validated.p' ... done 00:00:00.54
writing 6486 primer pairs to 'results.tsv' ... done 00:00:11.62

total runtime: 00:04:14.50

As we can see, primerForge found 30,413 kmers that were suitable for use as a primer in all three ingroup genomes. It then went on to identify 16,050 primer pairs that would produce PCR products between 500bp and 2000bp in the ingroup genomes. Next, it found that of those 16,050 pairs, 5,905 of them formed PCR products between 300bp and 3000bp in one or more of the outgroup genomes. Finally, it used isPcr to validate the remaining 10,145 primer pairs resulting in 6,486 primer pairs being written to file.

Examining the results

primerForge generated results.tsv, primers.bed, and primerForge.log.

results.tsv

Here are a few lines from results.tsv:

fwd_seq fwd_Tm fwd_GC rev_seq rev_Tm rev_GC i1.gbff_contig i1.gbff_length i2.gbff_contig i2.gbff_length i3.gbff_contig i3.gbff_length o1.gbff_contig o1.gbff_length o2.gbff_contig o2.gbff_length
AGAAGCAAAGGATATGGGAACAAC 57.1 41.7 AAATCAACACCCTCAATAAGCTCC 57.1 41.7 NZ_LAUX01000078.1 804 NZ_LAUV01000035.1 804 NZ_LAUY01000092.1 804 NA 0 NA 0
TCCATCTAATGAAGATCAACCAGG 55.9 41.7 CCCTAATTGTGATGAGTTGACAAC 55.9 41.7 NZ_LAUX01000010.1 710 NZ_LAUV01000042.1 713 NZ_LAUY01000078.1 710 NA 0 NA 0
CATCAGCTGTTGTAAATAACCCAC 56.2 41.7 GTGGAGCTATGAAACCAATATCAG 55.3 41.7 NZ_LAUX01000117.1 1694 NZ_LAUV01000064.1 1694 NZ_LAUY01000018.1 1694 NZ_LS483503.1 3212 NA 0

The first six columns show the forward and reverse sequences (5' --> 3') as well as their melting temperatures and their G+C content (mol %). Next, for each genome it lists the contig and the PCR product size that is predicted be produced by this pair. For example, the first pair of primers are predicted to produce PCR products of 804bp the ingroup genomes, and the binding sites for this primer pair in the files i1.gbff, i2.gbff, and i3.gbff can be found in contigs NZ_LAUX01000078.1, NZ_LAUV01000035.1, and NZ_LAUY01000092.1, respectively. This same pair is not predicted to produce any PCR products in either outgroup genome. Similarly, the third pair is predicted to produce a PCR product size of 1,694bp in all three ingroup genomes, no products o2.gbff, and a PCR product >3,000bp in o1.gbff.

If a primer pair is predicted to produce multiple products in an outgroup genome, then the contig column and the size column will list contigs and sizes in a comma-separated list linked by position. For example, if a primer pair was expected to produce a product of 1,990bp in contig_1 and 2,024bp in contig_2 in the genome file example.gbff, then the columns for this genome would look like this:

example.gbff_contig example.gbff_length
1990,2024 contig1,contig2

Note

Multiple PCR products will only ever be predicted for outgroup genomes as primerForge does not allow such primer pairs in the ingroup genome.

primers.bed

Here are a few lines of primers.bed:

NZ_LAUY01000092.1       1420    1444    AGAAGCAAAGGATATGGGAACAAC        0       -
NZ_LAUV01000035.1       11077   11101   AGAAGCAAAGGATATGGGAACAAC        0       +
NZ_LAUX01000078.1       567     591     AGAAGCAAAGGATATGGGAACAAC        0       +
NZ_LAUY01000092.1       640     664     AAATCAACACCCTCAATAAGCTCC        0       +
NZ_LAUV01000035.1       11857   11881   AAATCAACACCCTCAATAAGCTCC        0       -
NZ_LAUX01000078.1       1347    1371    AAATCAACACCCTCAATAAGCTCC        0       -
NZ_LAUY01000057.1       18978   19002   AGTTGGGATTAACCAGACTTCATC        1       +
NZ_LAUV01000024.1       48352   48376   AGTTGGGATTAACCAGACTTCATC        1       +
NZ_LAUX01000061.1       2318    2342    AGTTGGGATTAACCAGACTTCATC        1       +
NZ_LAUY01000057.1       19771   19795   GCTATTTCAAACGCTAAAGCTAGG        1       -
NZ_LAUV01000024.1       49145   49169   GCTATTTCAAACGCTAAAGCTAGG        1       -
NZ_LAUX01000061.1       3111    3135    GCTATTTCAAACGCTAAAGCTAGG        1       -

This file is in BED file format with one modification: the score column (the fifth column) has been overloaded with a "pair number" so that the primer sequences can be linked to one another more easily. For example, pair 0 is AGAAGCAAAGGATATGGGAACAAC and AAATCAACACCCTCAATAAGCTCC and corresponds with the first entry in results.tsv, and pair 1 is AGTTGGGATTAACCAGACTTCATC and GCTATTTCAAACGCTAAAGCTAGG and corresponds to the second entry in results.tsv.

Finding primer pairs that are target-specific

Let's assume that we want to filter our results to find primer pairs that amplify regions of the rpoC gene in our three ingroup isolates. First, we need to make a file in BED format that lists the coordinates of rpoC in our genomes. For rpoC in the ingroup genomes, it would look like this:

NZ_LAUX01000109.1	97	3866	rpoC_i1
NZ_LAUV01000076.1	23	3792	rpoC_i2
NZ_LAUY01000008.1	83	3852	rpoC_i3

The first column is the contig, the second column is the start position of the gene, the third column is the end position of the gene (exclusive), and the last column is the name of the entry. We will save this file as rpoC.bed.

In order to find the primers that intersect with these genes, we can use bedtools to find where our primers intersect with the rpoC gene. If necessary, bedtools can be installed with the following command:

conda install bedtools

Once installed, we can use the following command to generate a new bed file that contains only the primers that hit somewhere along the rpoC gene sequences:

bedtools intersect -a ./primers.bed -b ./rpoC.bed > rpoC_primers.bed

The first few lines of the file rpoC_primers.bed will look like this:

NZ_LAUY01000008.1       1460    1484    GTTTGAAATATTACCACGAGCTCC        3       +
NZ_LAUV01000076.1       1400    1424    GTTTGAAATATTACCACGAGCTCC        3       +
NZ_LAUX01000109.1       1474    1498    GTTTGAAATATTACCACGAGCTCC        3       +
NZ_LAUY01000008.1       2962    2986    CACCAGACATTCGTCCAATTATTC        3       -
NZ_LAUV01000076.1       2902    2926    CACCAGACATTCGTCCAATTATTC        3       -
NZ_LAUX01000109.1       2976    3000    CACCAGACATTCGTCCAATTATTC        3       -
NZ_LAUY01000008.1       3780    3804    GATCATGAACGAATTGTATCAGGG        74      +
NZ_LAUV01000076.1       3720    3744    GATCATGAACGAATTGTATCAGGG        74      +
NZ_LAUX01000109.1       3794    3818    GATCATGAACGAATTGTATCAGGG        74      +
NZ_LAUY01000008.1       574     598     GGTGTAAATCAATAGCTCCTTCAG        92      +
NZ_LAUV01000076.1       514     538     GGTGTAAATCAATAGCTCCTTCAG        92      +
NZ_LAUX01000109.1       588     612     GGTGTAAATCAATAGCTCCTTCAG        92      +
NZ_LAUY01000008.1       2548    2572    GACTTCAAGATCATGAGTATGCTG        92      -
NZ_LAUV01000076.1       2488    2512    GACTTCAAGATCATGAGTATGCTG        92      -
NZ_LAUX01000109.1       2562    2586    GACTTCAAGATCATGAGTATGCTG        92      -

As we can see, the forward and reverse primers for pair numbers 3 and 92 intersect with the rpoC gene in all three isolates. However, only the primer on the (+) strand intersects with rpoC for pair number 74.

Common error messages (and possible solutions)

detected wildcards that are not enclosed in quotes

This error occurs if you specify a wildcard representing input files without enclosing them in quotes. For example, this will cause the error:

primerForge --ingroup ./i*gbff

and this will fix it:

primerForge --ingroup "./i*gbff"

The same holds true for the --outgroup flag.

This error can also occur if you have inadvertently included a space in any of the arguments passed to other flags.

invalid or missing file(s)

This error occurs if the specified file(s) cannot be found or if the file format does not match the --format flag (default = genbank). Check that the file path is correct and the files can be read. If they are correct, then double check that you have specified --format fasta if you are working with fasta files.

failed to identify a set of kmers shared between the ingroup genomes

This error occurs if primerForge cannot find kmers that are shared in all the ingroup genomes. This can occur if the input genomes are too distantly related, or if one or more of the genomes is of very poor quality. To diagnose this, try repeating the command but include the --debug flag. This will report which ingroup genome is causing the number of shared kmers to drop to zero in the primerForge.log file.

failed to find primer pairs that are absent in the outgroup

This error occurs if all the primer pairs primerForge identified cannot be used to distinguish the ingroup from the outgroup. This most often occurs because one or more members of the outgroup is too closely-related to the ingroup. To diagnose this, try repreating the command but include the --debug flag. This will report which outgroup genome is causing the number of shared kmers to drop to zero in the primerForge.log file. Alternatively, you can expand your search by widening the ranges passed to the flags --pcr_prod and/or --bad_sizes.

ImportError: /lib64/libstdc++.so.6: version 'GLIBCXX_3.4.20' not found (required by khmer/_khmer.cpython-311-x86_64-linux-gnu.so)

This error will occur if the C++ library on your machine does not include the symbol GLIBCXX_3.4.20 which is used by the khmer package. This can be resolved by installing the GNU Standard C++ Library using the following conda command:

conda install libstdcxx-ng

Contributing

Thank you for your interest in contributing! Please see the contributing guidelines for more information.