Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
236 changes: 236 additions & 0 deletions docarray/utils/create_dynamic_doc_class.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
from docarray import DocList, BaseDoc
from docarray.typing import AnyTensor
from pydantic import create_model
from typing import Dict, List, Any, Union, Optional, Type


def create_pure_python_type_model(model: Any) -> BaseDoc:
"""
Take a Pydantic model and cast DocList fields into List fields.

This may be necessary due to limitations in Pydantic:

https://github.com/docarray/docarray/issues/1521
https://github.com/pydantic/pydantic/issues/1457

---

```python
from docarray import BaseDoc


class MyDoc(BaseDoc):
tensor: Optional[AnyTensor]
url: ImageUrl
title: str
texts: DocList[TextDoc]


MyDocCorrected = create_new_model_cast_doclist_to_list(CustomDoc)
```

---
:param model: The input model
:return: A new subclass of BaseDoc, where every DocList type in the schema is replaced by List.
"""
fields: Dict[str, Any] = {}
for field_name, field in model.__annotations__.items():
try:
if issubclass(field, DocList):
t: Any = field.doc_type
fields[field_name] = (List[t], {})
else:
fields[field_name] = (field, {})
except TypeError:
fields[field_name] = (field, {})
return create_model(
model.__name__, __base__=model, __validators__=model.__validators__, **fields
)


def _get_field_type_from_schema(
field_schema: Dict[str, Any],
field_name: str,
root_schema: Dict[str, Any],
cached_models: Dict[str, Any],
is_tensor: bool = False,
num_recursions: int = 0,
) -> type:
"""
Private method used to extract the corresponding field type from the schema.
:param field_schema: The schema from which to extract the type
:param field_name: The name of the field to be created
:param root_schema: The schema of the root object, important to get references
:param cached_models: Parameter used when this method is called recursively to reuse partial nested classes.
:param is_tensor: Boolean used to tell between tensor and list
:param num_recursions: Number of recursions to properly handle nested types (Dict, List, etc ..)
:return: A type created from the schema
"""
field_type = field_schema.get('type', None)
tensor_shape = field_schema.get('tensor/array shape', None)
ret: Any
if 'anyOf' in field_schema:
any_of_types = []
for any_of_schema in field_schema['anyOf']:
if '$ref' in any_of_schema:
obj_ref = any_of_schema.get('$ref')
ref_name = obj_ref.split('/')[-1]
any_of_types.append(
create_base_doc_from_schema(
root_schema['definitions'][ref_name],
ref_name,
cached_models=cached_models,
)
)
else:
any_of_types.append(
_get_field_type_from_schema(
any_of_schema,
field_name,
root_schema=root_schema,
cached_models=cached_models,
is_tensor=tensor_shape is not None,
num_recursions=0,
)
) # No Union of Lists
ret = Union[tuple(any_of_types)]
for rec in range(num_recursions):
ret = List[ret]
elif field_type == 'string':
ret = str
for rec in range(num_recursions):
ret = List[ret]
elif field_type == 'integer':
ret = int
for rec in range(num_recursions):
ret = List[ret]
elif field_type == 'number':
if num_recursions <= 1:
# This is a hack because AnyTensor is more generic than a simple List and it comes as simple List
if is_tensor:
ret = AnyTensor
else:
ret = List[float]
else:
ret = float
for rec in range(num_recursions):
ret = List[ret]
elif field_type == 'boolean':
ret = bool
for rec in range(num_recursions):
ret = List[ret]
elif field_type == 'object' or field_type is None:
doc_type: Any
if 'additionalProperties' in field_schema: # handle Dictionaries
additional_props = field_schema['additionalProperties']
if additional_props.get('type') == 'object':
doc_type = create_base_doc_from_schema(
additional_props, field_name, cached_models=cached_models
)
ret = Dict[str, doc_type]
else:
ret = Dict[str, Any]
else:
obj_ref = field_schema.get('$ref') or field_schema.get('allOf', [{}])[
0
].get('$ref', None)
if num_recursions == 0: # single object reference
if obj_ref:
ref_name = obj_ref.split('/')[-1]
ret = create_base_doc_from_schema(
root_schema['definitions'][ref_name],
ref_name,
cached_models=cached_models,
)
else:
ret = Any
else: # object reference in definitions
if obj_ref:
ref_name = obj_ref.split('/')[-1]
doc_type = create_base_doc_from_schema(
root_schema['definitions'][ref_name],
ref_name,
cached_models=cached_models,
)
ret = DocList[doc_type]
else:
doc_type = create_base_doc_from_schema(
field_schema, field_name, cached_models=cached_models
)
ret = DocList[doc_type]
elif field_type == 'array':
ret = _get_field_type_from_schema(
field_schema=field_schema.get('items', {}),
field_name=field_name,
root_schema=root_schema,
cached_models=cached_models,
is_tensor=tensor_shape is not None,
num_recursions=num_recursions + 1,
)
else:
if num_recursions > 0:
raise ValueError(
f"Unknown array item type: {field_type} for field_name {field_name}"
)
else:
raise ValueError(
f"Unknown field type: {field_type} for field_name {field_name}"
)
return ret


def create_base_doc_from_schema(
schema: Dict[str, Any], base_doc_name: str, cached_models: Optional[Dict] = None
) -> Type:
"""
Dynamically create a `BaseDoc` subclass from a `schema` of another `BaseDoc`.

This method is intended to dynamically create a `BaseDoc` compatible with the schema
of another BaseDoc. This is useful when that other `BaseDoc` is not available in the current scope. For instance, you may have stored the schema
as a JSON, or sent it to another service, etc.

Due to this Pydantic limitation (https://github.com/docarray/docarray/issues/1521, https://github.com/pydantic/pydantic/issues/1457), we need to make sure that the
input schema uses `List` and not `DocList`. Therefore this is recommended to be used in combination with `create_new_model_cast_doclist_to_list`
to make sure that `DocLists` in schema are converted to `List`.

---

```python
from docarray import BaseDoc


class MyDoc(BaseDoc):
tensor: Optional[AnyTensor]
url: ImageUrl
title: str
texts: DocList[TextDoc]


MyDocCorrected = create_pure_python_type_model(CustomDoc)
new_my_doc_cls = create_base_doc_from_schema(CustomDocCopy.schema(), 'MyDoc')
```

---
:param schema: The schema of the original `BaseDoc` where DocLists are passed as regular Lists of Documents.
:param base_doc_name: The name of the new pydantic model created.
:param cached_models: Parameter used when this method is called recursively to reuse partial nested classes.
:return: A BaseDoc class dynamically created following the `schema`.
"""
cached_models = cached_models if cached_models is not None else {}
fields: Dict[str, Any] = {}
if base_doc_name in cached_models:
return cached_models[base_doc_name]
for field_name, field_schema in schema.get('properties', {}).items():
field_type = _get_field_type_from_schema(
field_schema=field_schema,
field_name=field_name,
root_schema=schema,
cached_models=cached_models,
is_tensor=False,
num_recursions=0,
)
fields[field_name] = (field_type, field_schema.get('description'))

model = create_model(base_doc_name, __base__=BaseDoc, **fields)
cached_models[base_doc_name] = model
return model
Loading