Skip to content

reinforcement learning, deep Q-network, double DQN, dueling DQN, prioritized experience replay

License

Notifications You must be signed in to change notification settings

arthurxlw/cytonRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CytonRL: an Efficient Reinforcement Learning Open-source Toolkit Implemented in C++

Xiaolin Wang ([email protected], [email protected])

================================================

1) Prerequest

cuda >= 9.0 

cudnn >= 7.0

opencv  https://sourceforge.net/projects/opencvlibrary/

The Arcade Learning Environment (ALE)  https://github.com/mgbellemare/Arcade-Learning-Environment

2) Compile

make

3) Train

bin/cytonRl --env roms/breakout.bin --mode train --saveModel model/model --showScreen 1

or faster training as,

bin/cytonRl --env roms/breakout.bin --mode train --saveModel model/model --showScreen 0

The second command turn off the game window which makes the program run much faster. The game window can be brought back by creating a empty file "mode/model.screen", or turned off again by deleting that file.

4) Test

bin/cytonRl --mode test --env roms/breakout.bin --loadModel model/model.100000000 --showScreen 1

or using our trained model as

bin/cytonRl --mode test --env roms/breakout.bin --loadModel model-trained/model --showScreen 1

or faster test as

bin/cytonRl --mode test --env roms/breakout.bin --loadModel model-trained/model --showScreen 0

The game window can be brought back by creating a empty file "mode/model.screen", or turned off again by deleting that file.

================================================

If you are using our toolkit, please kindly cite our paper (available at doc/cytonRl.pdf).

@article{wang,2018cytonmt,

title={CytonRL: an Efficient Reinforcement Learning Open-source Toolkit Implemented in C++},

author={Wang, Xiaolin},

year={2018}

}

================================================

5) Usage

bin/cytonRl --help

A.L.E: Arcade Learning Environment (version 0.5.1)

[Powered by Stella]

Use -help for help screen.

Warning: couldn't load settings file: ./ale.cfg

version 1.0

--help : explanation, [valid values] (default)

--batchSize : the size of batch (32)

--dueling : using dueling DQN, 0|1 (1)

--eGreedy : e-Greedy start_value : end_value : num_steps (1.0:0.01:5000000)

--env : the rom of an Atari game (roms/seaquest.bin)

--gamma : parameter in the Bellman equation (0.99)

--inputFrames : the number of concatnated frames as input (4)

--learningRate : the learning rate (0.0000625)

--learnStart : the step of starting learning (50000)

--loadModel : the file path for loading a model ()

--maxEpisodeSteps : the maximun number of steps per episode (18000)

--maxSteps : the maximun number of training steps (100000000)

--mode : working mode, train|test (train)

--networkSize : the ouput dimension of each hidden layer (32:64:64:512)

--optimizer : the optimzier, SGD|RMSprop (RMSprop)

--priorityAlpha : the alpha parameter of prioritized experience replay (0.6)

--priorityBeta : the beta parameter of prioritized experience replay (0.4)

--progPeriod : the period of showing training progress (10000)

--replayMemory : the capacity of replay memory (1000000)

--saveModel : the file path for saving models (model/model)

--savePeriod : the period of saving models (1000000)

--showScreen : whether show screens of playing Atari games, 0|1. Creating or deleting the model/model.screen file can change this setting during the running of the program. Note that hidding screens makes program run faster. (0)

--targetQ : the period of copy the current network to the target network (30000)

--testEGreedy : the e-Greedy threshold of test (0.001)

--testEpisodes : the number of test epidoes (100)

--testMaxEpisodeSteps : the maximun number of steps per test episode (18000)

--testPeriod : the period of test (5000000)

--updatePeriod : the period of learn a batch (4)

About

reinforcement learning, deep Q-network, double DQN, dueling DQN, prioritized experience replay

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages