-
Notifications
You must be signed in to change notification settings - Fork 94
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add condlane * update condlane * fix interface * minor fix * update config & rename models * add README.md for condlane * update datasets/registry * remove some magic number * add condlane resnet50 * minor fix * update readme * minor fix Co-authored-by: zhengtu <[email protected]>
- Loading branch information
Showing
56 changed files
with
2,470 additions
and
172 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution | ||
|
||
## Introduction | ||
|
||
```latex | ||
@article{liu2021condlanenet, | ||
title={CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution}, | ||
author={Liu, Lizhe and Chen, Xiaohao and Zhu, Siyu and Tan, Ping}, | ||
journal={arXiv preprint arXiv:2105.05003}, | ||
year={2021} | ||
} | ||
``` | ||
|
||
## Models | ||
| Architecture| Backbone |Dataset | Metric | Config| Checkpoints | | ||
|-------------|----------|--------|--------|-------|--------------| | ||
| CondLane | ResNet101 | CULane | F1: 79.47| [config](configs/condlane/resnet101_culane.py) |[model](https://github.com/Turoad/lanedet/releases/download/1.0/condlane_r101_culane.pth.zip) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
net = dict( | ||
type='Detector', | ||
) | ||
|
||
backbone = dict( | ||
type='ResNetWrapper', | ||
resnet='resnet101', | ||
pretrained=True, | ||
replace_stride_with_dilation=[False, False, False], | ||
out_conv=False, | ||
in_channels=[64, 128, 256, 512] | ||
) | ||
|
||
sample_y = range(590, 270, -8) | ||
|
||
batch_size = 8 | ||
aggregator = dict( | ||
type='TransConvEncoderModule', | ||
in_dim=2048, | ||
attn_in_dims=[2048, 256], | ||
attn_out_dims=[256, 256], | ||
strides=[1, 1], | ||
ratios=[4, 4], | ||
pos_shape=(batch_size, 10, 25), | ||
) | ||
|
||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 256], | ||
out_channels=64, | ||
num_outs=4, | ||
#trans_idx=-1, | ||
) | ||
|
||
loss_weights=dict( | ||
hm_weight=1, | ||
kps_weight=0.4, | ||
row_weight=1., | ||
range_weight=1., | ||
) | ||
|
||
num_lane_classes=1 | ||
heads=dict( | ||
type='CondLaneHead', | ||
heads=dict(hm=num_lane_classes), | ||
in_channels=(64, ), | ||
num_classes=num_lane_classes, | ||
head_channels=64, | ||
head_layers=1, | ||
disable_coords=False, | ||
branch_in_channels=64, | ||
branch_channels=64, | ||
branch_out_channels=64, | ||
reg_branch_channels=64, | ||
branch_num_conv=1, | ||
hm_idx=2, | ||
mask_idx=0, | ||
compute_locations_pre=True, | ||
location_configs=dict(size=(batch_size, 1, 80, 200), device='cuda:0') | ||
) | ||
|
||
optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), eps=1e-8) | ||
|
||
epochs = 16 | ||
total_iter = (88880 // batch_size) * epochs | ||
import math | ||
scheduler = dict( | ||
type = 'MultiStepLR', | ||
milestones=[8, 14], | ||
gamma=0.1 | ||
) | ||
|
||
seg_loss_weight = 1.0 | ||
eval_ep = 1 | ||
save_ep = 1 | ||
|
||
img_norm = dict( | ||
mean=[75.3, 76.6, 77.6], | ||
std=[50.5, 53.8, 54.3] | ||
) | ||
|
||
img_height = 320 | ||
img_width = 800 | ||
cut_height = 0 | ||
ori_img_h = 590 | ||
ori_img_w = 1640 | ||
|
||
mask_down_scale = 4 | ||
hm_down_scale = 16 | ||
num_lane_classes = 1 | ||
line_width = 3 | ||
radius = 6 | ||
nms_thr = 4 | ||
img_scale = (800, 320) | ||
crop_bbox = [0, 270, 1640, 590] | ||
mask_size = (1, 80, 200) | ||
|
||
train_process = [ | ||
dict(type='Alaug', | ||
transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)), | ||
dict( | ||
type='Crop', | ||
x_min=crop_bbox[0], | ||
x_max=crop_bbox[2], | ||
y_min=crop_bbox[1], | ||
y_max=crop_bbox[3], | ||
p=1), | ||
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1), | ||
dict( | ||
type='OneOf', | ||
transforms=[ | ||
dict( | ||
type='RGBShift', | ||
r_shift_limit=10, | ||
g_shift_limit=10, | ||
b_shift_limit=10, | ||
p=1.0), | ||
dict( | ||
type='HueSaturationValue', | ||
hue_shift_limit=(-10, 10), | ||
sat_shift_limit=(-15, 15), | ||
val_shift_limit=(-10, 10), | ||
p=1.0), | ||
], | ||
p=0.7), | ||
dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2), | ||
dict( | ||
type='OneOf', | ||
transforms=[ | ||
dict(type='Blur', blur_limit=3, p=1.0), | ||
dict(type='MedianBlur', blur_limit=3, p=1.0) | ||
], | ||
p=0.2), | ||
dict(type='RandomBrightness', limit=0.2, p=0.6), | ||
dict( | ||
type='ShiftScaleRotate', | ||
shift_limit=0.1, | ||
scale_limit=(-0.2, 0.2), | ||
rotate_limit=10, | ||
border_mode=0, | ||
p=0.6), | ||
dict( | ||
type='RandomResizedCrop', | ||
height=img_scale[1], | ||
width=img_scale[0], | ||
scale=(0.8, 1.2), | ||
ratio=(1.7, 2.7), | ||
p=0.6), | ||
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),] | ||
|
||
), | ||
dict(type='CollectLane', | ||
down_scale=mask_down_scale, | ||
hm_down_scale=hm_down_scale, | ||
max_mask_sample=5, | ||
line_width=line_width, | ||
radius=radius, | ||
keys=['img', 'gt_hm'], | ||
meta_keys=[ | ||
'gt_masks', 'mask_shape', 'hm_shape', | ||
'down_scale', 'hm_down_scale', 'gt_points' | ||
] | ||
), | ||
#dict(type='Resize', size=(img_width, img_height)), | ||
dict(type='Normalize', img_norm=img_norm), | ||
dict(type='ToTensor', keys=['img', 'gt_hm']), | ||
] | ||
|
||
|
||
val_process = [ | ||
dict(type='Alaug', | ||
transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)), | ||
dict(type='Crop', | ||
x_min=crop_bbox[0], | ||
x_max=crop_bbox[2], | ||
y_min=crop_bbox[1], | ||
y_max=crop_bbox[3], | ||
p=1), | ||
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1)] | ||
), | ||
#dict(type='Resize', size=(img_width, img_height)), | ||
dict(type='Normalize', img_norm=img_norm), | ||
dict(type='ToTensor', keys=['img']), | ||
] | ||
|
||
dataset_path = './data/CULane' | ||
dataset = dict( | ||
train=dict( | ||
type='CULane', | ||
data_root=dataset_path, | ||
split='train', | ||
processes=train_process, | ||
), | ||
val=dict( | ||
type='CULane', | ||
data_root=dataset_path, | ||
split='test', | ||
processes=val_process, | ||
), | ||
test=dict( | ||
type='CULane', | ||
data_root=dataset_path, | ||
split='test', | ||
processes=val_process, | ||
) | ||
) | ||
|
||
|
||
workers = 12 | ||
log_interval = 1000 | ||
lr_update_by_epoch=True |
Oops, something went wrong.