Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX: Updates for Numba 0.49.0 #531

Merged
merged 4 commits into from
Apr 21, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 10 additions & 4 deletions quantecon/optimize/nelder_mead.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,9 @@ def _nelder_mead_algorithm(fun, vertices, bounds=np.array([[], []]).T,
break

# Step 2: Reflection
x_r = x_bar + ρ * (x_bar - vertices[worst_val_idx])
# https://github.com/QuantEcon/QuantEcon.py/issues/530
temp = ρ * (x_bar - vertices[worst_val_idx])
x_r = x_bar + temp
f_r = _neg_bounded_fun(fun, bounds, x_r, args=args)

if f_r >= f_val[best_val_idx] and f_r < f_val[sort_ind[n-1]]:
Expand All @@ -230,7 +232,9 @@ def _nelder_mead_algorithm(fun, vertices, bounds=np.array([[], []]).T,

# Step 3: Expansion
elif f_r < f_val[best_val_idx]:
x_e = x_bar + χ * (x_r - x_bar)
# https://github.com/QuantEcon/QuantEcon.py/issues/530
temp = χ * (x_r - x_bar)
x_e = x_bar + temp
f_e = _neg_bounded_fun(fun, bounds, x_e, args=args)
if f_e < f_r: # Greedy minimization
vertices[worst_val_idx] = x_e
Expand All @@ -242,11 +246,13 @@ def _nelder_mead_algorithm(fun, vertices, bounds=np.array([[], []]).T,
# Step 4 & 5: Contraction and Shrink
else:
# Step 4: Contraction
# https://github.com/QuantEcon/QuantEcon.py/issues/530
temp = γ * (x_r - x_bar)
if f_r < f_val[worst_val_idx]: # Step 4.a: Outside Contraction
x_c = x_bar + γ * (x_r - x_bar)
x_c = x_bar + temp
LV_ratio_update = ργ
else: # Step 4.b: Inside Contraction
x_c = x_bar - γ * (x_r - x_bar)
x_c = x_bar - temp
LV_ratio_update = γ

f_c = _neg_bounded_fun(fun, bounds, x_c, args=args)
Expand Down
24 changes: 18 additions & 6 deletions quantecon/quad.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
'qnwsimp', 'qnwtrap', 'qnwunif', 'quadrect', 'qnwbeta',
'qnwgamma']


@vectorize(nopython=True)
def gammaln(x):
return math.lgamma(x)
Expand Down Expand Up @@ -681,6 +682,7 @@ def _make_multidim_func(one_d_func, n, *args):
nodes = gridmake(*nodes)
return nodes, weights


@jit(nopython=True)
def _qnwcheb1(n, a, b):
"""
Expand Down Expand Up @@ -729,6 +731,7 @@ def _qnwcheb1(n, a, b):

return nodes, weights


@jit(nopython=True)
def _qnwlege1(n, a, b):
"""
Expand Down Expand Up @@ -784,7 +787,10 @@ def _qnwlege1(n, a, b):
p2 = p1
p1 = ((2 * j - 1) * z * p2 - (j - 1) * p3) / j

pp = n * (z * p1 - p2)/(z * z - 1.0)
# https://github.com/QuantEcon/QuantEcon.py/issues/530
top = n * (z * p1 - p2)
bottom = z ** 2 - 1.0
pp = top / bottom
z1 = z.copy()
z = z1 - p1/pp
if np.all(np.abs(z - z1) < 1e-14):
Expand All @@ -796,11 +802,13 @@ def _qnwlege1(n, a, b):
nodes[i] = xm - xl * z
nodes[- i - 1] = xm + xl * z

weights[i] = 2 * xl / ((1 - z * z) * pp * pp)
# https://github.com/QuantEcon/QuantEcon.py/issues/530
weights[i] = 2 * xl / ((1 - z ** 2) * pp * pp)
weights[- i - 1] = weights[i]

return nodes, weights


@jit(nopython=True)
def _qnwnorm1(n):
"""
Expand Down Expand Up @@ -879,6 +887,7 @@ def _qnwnorm1(n):

return nodes, weights


@jit(nopython=True)
def _qnwsimp1(n, a, b):
"""
Expand Down Expand Up @@ -927,6 +936,7 @@ def _qnwsimp1(n, a, b):

return nodes, weights


@jit(nopython=True)
def _qnwtrap1(n, a, b):
"""
Expand Down Expand Up @@ -974,6 +984,7 @@ def _qnwtrap1(n, a, b):

return nodes, weights


@jit(nopython=True)
def _qnwbeta1(n, a=1.0, b=1.0):
"""
Expand Down Expand Up @@ -1090,13 +1101,14 @@ def _qnwbeta1(n, a=1.0, b=1.0):
weights[i] = temp/(pp*p2)

nodes = (1-nodes)/2
weights = weights * math.exp(gammaln(a+n) + gammaln(b+n)
- gammaln(n+1) - gammaln(n+ab+1))
weights = weights / (2*math.exp(gammaln(a+1) + gammaln(b+1)
- gammaln(ab+2)))
weights = weights * math.exp(gammaln(a+n) + gammaln(b+n) -
gammaln(n+1) - gammaln(n+ab+1))
weights = weights / (2*math.exp(gammaln(a+1) + gammaln(b+1) -
gammaln(ab+2)))

return nodes, weights


@jit(nopython=True)
def _qnwgamma1(n, a=1.0, b=1.0, tol=3e-14):
"""
Expand Down
5 changes: 4 additions & 1 deletion quantecon/util/numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,10 @@
"""
import numpy as np
from numba import jit, generated_jit, types
from numba.targets.linalg import _LAPACK
try:
from numba.np.linalg import _LAPACK # for Numba >= 0.49.0
except ModuleNotFoundError:
from numba.targets.linalg import _LAPACK # for Numba < 0.49.0


# BLAS kinds as letters
Expand Down