A curated list of awesome Direct Volume Rendering articles, software and resources.
- Interpolating and Downsampling RGBA Volume Data (2008), M. Kraus et al. pdf
- GPU Gems, Chapter 39. Volume Rendering Techniques (2004) web
- Opacity-Weighted Color Interpolation for Volume Sampling (1998), C. Wittenbrink et al. pdf
- Optical Models for Direct Volume Rendering (1995), Max et Chen, pdf
- SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering (2017), M. Hadwiger et al. pdf
- Accelerating Volume Raycasting using Occlusion Frustums (2008), J. Mensmann et al. pdf
- Optimizing GPU volume rendering (2006), D. Ruijters et al. pdf
- Explicit Cache Management for Volume Ray-Casting on Parallel Architectures (2012), D. Jönsson et al. pdf
- Advanced Illumination Techniques for GPU-based Volume Raycasting (2009), M. Hadwiger et al. pdf
- A survey of volumetric illumination techniques for interactive volume rendering (2014), D. Jönsson et al. pdf
- Real-Time Ambient Occlusion and Halos with Summed Area Tables (2010), Diaz et al. pdf
- Display of Surfaces from Volume Data (1988), M. Levoy pdf
- Correlated Photon Mapping for Interactive Global Illumination of Time-Varying Volumetric Data (2016), D. Jönsson et al. pdf
- GPU-Based Monte-Carlo Volume Raycasting (2007), R. Salama et al. pdf
- Anisotropic Ambient Volume Shading (2015), M. Ament et al. pdf
- Interactive Volumetric Lighting Simulating Scattering and Shadowing (2009), T.Ropinski et al. pdf
- State of the Art in Transfer Functions for Direct Volume Rendering (2016), P. Ljung et al. pdf
- A Survey of Perceptually Motivated 3D Visualization of Medical Image Data (2016), B. Preim et al. pdf
- Real-Time Processing for Advanced Ultrasound Visualization (2016), Schulte zu Berge, Christian Ulrich, Nassir Navab, Nassir Navab, and Bernhard Preim. pdf
- The ultrasound visualization pipeline (2014), Å. Birkeland et al. pdf
- Feature Emphasis and Contextual Cutaways for Multimodal Medical Visualization (2007), M. Burns et al. pdf
Contributions are welcome! Please create a pull-request to propose your changes.