Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

updating #119

Merged
merged 10 commits into from
Nov 14, 2022
Prev Previous commit
Next Next commit
ngs from API (#115)
* fix broken file names

* Added ngs_id_script.py and template docs

* Added ngs_id_script.py and template dataset

* message Please enter the commit message for your changes. Lines starting

* updated script

Co-authored-by: hadleyking <[email protected]>
  • Loading branch information
Jgergely11 and HadleyKing authored Nov 2, 2022
commit 260b32528dc83b8ac9c1f78187a30f8633d696d6
230 changes: 230 additions & 0 deletions lib/ngs_id_from_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@

import os
import requests
import json
import csv
import pandas as pd
pd.options.mode.chained_assignment = None # removes warning message from overwriting

api_url = "https://beta-api.argosdb.org/records/search"
HIVE_results = []
Crandall_results = []
HIVE_data = [{
"bcoid": "ARGOS_000019",
"offset": 1,
"limit": 10000
}]
Crandall_data = [{
"bcoid": "ARGOS_000025",
"offset": 1,
"limit": 10000
}]

### Need BCO for Pond NGS Data

# defines function to get HIVE Lab specific data
def get_HIVE():
for item in HIVE_data:
response = requests.post(api_url, json=item)
HIVE_results.append(response.json())
with open('hiveapi.json', 'w', newline = '', encoding='utf-8') as f:
json.dump(HIVE_results,f, ensure_ascii=False, indent=4)

#Convert json to tsv and make keys into column headers
with open('hiveapi.json') as jsonfile:
data = json.load(jsonfile)
records=data[0]['recordlist']
datafile = open('hiveTEMP.tsv','w', newline = '')
tsvwriter=csv.writer(datafile, delimiter= '\t')
count=0
for record in records:
if count==0:
header = record.keys()
tsvwriter.writerow(header)
count+=1
tsvwriter.writerow(record.values())
#Read/write tsv - writes appropriate headers for ngs_id then writes corresponding columns from ngsQC file
with open('hiveTEMP.tsv', 'r') as source:
reader = csv.reader(source, delimiter='\t')
with open('hiveapi.tsv', 'w', newline = '') as result:
writer=csv.writer(result, delimiter='\t')
headings=next(reader)
#append headers for ngs_id
writer.writerow(['organism_name', 'leaf_node', 'genome_assembly_id', 'taxonomy_id', 'bioproject','biosample','sra_run_id','ngs_read_file_source','ref_org','isolate_identifiers','selection_notes','lab_name','files_processed'])
# These columns need to be updated/changed to reflect new columns added to ngs_id
for r in reader:
writer.writerow([r[3],r[4],r[6],r[5],r[11],r[12],r[23],r[13]])
datafile.close()
get_HIVE()

data_hl = pd.read_table('hiveapi.tsv', sep='\t', on_bad_lines='skip')

df_hl = data_hl
#This line originally filtered assembly ids
df_hl=df_hl[df_hl['sra_run_id'].isnull() | ~df_hl[df_hl['sra_run_id'].notnull()].duplicated(subset='sra_run_id',keep='first')]
df_hl.lab_name = 'HIVE Lab'
df_hl.files_processed = 'ngsQC_HL'

#for record in response.json()['recordlist']:
# if record['genome_assembly_id'] not in assemblies:
# assemblies.append(record['genome_assembly_id'])
# os.system(f"efetch -db assembly -id {record['genome_assembly_id']} -format docsum > test5/{record['genome_assembly_id']}.xml")
#print(response.status_code)

def get_Crandall():
for item in Crandall_data:
response = requests.post(api_url, json=item)
Crandall_results.append(response.json())
with open('Crandallapi.json', 'w', newline = '', encoding='utf-8') as f:
json.dump(Crandall_results,f, ensure_ascii=False, indent=4)
#Convert json to tsv and make keys into column headers
with open('Crandallapi.json') as jsonfile:
data = json.load(jsonfile)
records=data[0]['recordlist']
datafile = open('CrandallTEMP.tsv','w', newline = '')
tsvwriter=csv.writer(datafile, delimiter= '\t')
count=0
for record in records:
if count==0:
header = record.keys()
tsvwriter.writerow(header)
count+=1
tsvwriter.writerow(record.values())


#Read/write tsv - writes appropriate headers for ngs_id then writes corresponding columns from ngsQC file
#
#
# Need to figure out how to pull assembly id for corresponding Biosample
with open('CrandallTEMP.tsv', 'r') as source:
reader = csv.reader(source, delimiter='\t')
with open('Crandallapi.tsv', 'w', newline = '') as result:
writer=csv.writer(result, delimiter='\t')
headings=next(reader)
#append headers for ngs_id
####
#### ngsQC_Crandall hasn't been updated for v9 - this will need to be edited
#####
writer.writerow(['organism_name', 'leaf_node', 'genome_assembly_id', 'taxonomy_id', 'bioproject','biosample','sra_run_id','ngs_read_file_source','ref_org','isolate_identifiers','selection_notes','lab_name','files_processed'])
# These columns need to be updated/changed to reflect new columns added to ngs_id
for r in reader:
writer.writerow([r[3],r[4],r[6],r[5],r[11],r[12],r[13],r[14]])

datafile.close()
get_Crandall()


data_c = pd.read_table('Crandallapi.tsv', sep='\t', on_bad_lines='skip')
df_c = data_c
#This line originally filtered assembly ids
df_c=df_c[df_c['sra_run_id'].isnull() | ~df_c[df_c['sra_run_id'].notnull()].duplicated(subset='sra_run_id',keep='first')]
df_c.lab_name = 'Crandall Lab'
df_c.files_processed = 'ngsQC_Crandall'

#def get_Pond():
# for item in Pond_data:
# response = requests.post(api_url, json=item)
# Pond_results.append(response.json())
# with open('Pondapi.json', 'w', newline = '', encoding='utf-8') as f:
# json.dump(Pond_results,f, ensure_ascii=False, indent=4)
#
#Convert json to tsv and make keys into column headers
# with open('Pondapi.json') as jsonfile:
# data = json.load(jsonfile)
# records=data[0]['recordlist']
# datafile = open('Pondapi.tsv','w', newline = '')
# tsvwriter=csv.writer(datafile, delimiter= '\t')
# count=0
# for record in records:
# if count==0:
# header = record.keys()
# tsvwriter.writerow(header)
# count+=1
# tsvwriter.writerow(record.values())


#Read/write tsv - writes appropriate headers for ngs_id then writes corresponding columns from ngsQC file
#
#
# Need to figure out how to pull assembly id for corresponding Biosample
# with open('Pondapi.tsv', 'r+') as source:
# reader = csv.reader(source, delimiter='\t')

# with open('Pondapi.tsv', 'r+', newline = '') as result:
# writer=csv.writer(result, delimiter='\t')
# headings=next(reader)
#append headers for ngs_id
# writer.writerow(['organism_name', 'leaf_node', 'genome_assembly_id', 'taxonomy_id', 'bioproject','biosample','sra_run_id','ngs_read_file_source','ref_org','isolate_identifiers','selection_notes','lab_name','files_processed'])


# These columns need to be updated/changed to reflect new columns added to ngs_id
# for r in reader:
# writer.writerow([r[3],r[4],r[6],r[5],r[11],r[12],r[23],r[13]])



# datafile.close()

#get_Pond()











dfs = [df_hl, df_c]
#
#### dfs = [df_hl, df_c, df_p]
#
combined_file = pd.concat(dfs)
dfinal=combined_file
#Populate Reference Orgs
def ref_org(row):
if row['genome_assembly_id'] == 'GCA_000865725.1': # (A/Puerto Rico/8/1934(H1N1))
return "Yes"
elif row['genome_assembly_id'] == 'GCA_009858895.3': #isolate Wuhan-Hu-1
return "Yes"
elif row['genome_assembly_id'] == 'GCA_001558355.2': #LT2
return "Yes"
elif row['genome_assembly_id'] == 'GCA_000857325.2': #Marburg
return "Yes"
elif row['genome_assembly_id'] == 'GCA_003102975.1': #HXB2
return "Yes"
else:
return "No"
dfinal=dfinal.assign(ref_org=dfinal.apply(ref_org, axis =1))

#Populate selection_notes for all organisms in ARGOS Bioproject
def selection_notes(row):
if row['bioproject'] == 'PRJNA231221':
return "Belongs to FDA-ARGOS PRJNA231221."
elif row['bioproject'] == 'PRJNA726840':
return "Coding-complete Genome sequences for SARS-CoV-2 B.1.1.7 and B.1.351 Variants from Metro Manila, Philippines, outlined in the following paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281087/"
elif row['bioproject'] == 'PRJNA729484':
return "Raw sequencing reads were collected for the SARS-CoV-2 P.1 variant in Northeast Brazil, outlined in this paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321350/"
elif row['bioproject'] == 'PRJNA791622' and row['lab_name'] == 'Pond Lab':
return "For omicron, we are selecting EPI_ISL_6913953. Sequencing was conducted on Illumina MiSeq, has high coverage, and a consistent quality score across all base calls above 30. Raw reads are available at https://www.ncbi.nlm.nih.gov/sra/SRX13486794, and a full description of the patient harboring the virus is supplied with the following publication https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab1072/6494531?login=true. The patient was one of the first two known COVID-19 cases classified as omicron in Japan. To put the collection date of 28 November 2021 in perspective, the first known omicron sample was collected on 8 November 2021. Raw reads from South Africa are available, but the average phred quality score is much lower for those samples."
elif row['bioproject'] == 'PRJNA791622' and row['lab_name'] == 'HIVE Lab':
return "Raw sequencing reads were collected as part of a fusogenicity and pathogenicity study, outlined in the following paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942852/"
elif row['bioproject'] == 'PRJNA603194':
return "SARS-CoV-2 original isolate from human lung metagenome from Wuhan."
elif row['bioproject'] == 'PRJEB12890':
return "List of SRA IDs retrieved using search string in SRA 'txid211044[Organism:exp].' The SRA ID was selected based on NCBI search filters Source: RNA, Type: genome, Library layout: paired, Platform: Illumina. Project National Collection of Pathogenic Viruses (NCPV) UK sequences well-characterised, authenticated human pathogenic viruses."

dfinal=dfinal.assign(selection_notes=dfinal.apply(selection_notes, axis=1))
dfinal=dfinal.sort_values('organism_name', ascending=True)
dfinal.to_csv('ngs_id_from_api.tsv', sep = '\t', index = False)

#clean up files
os.remove('Crandallapi.json')
os.remove('hiveapi.json')
#comment out lines below to keep tsv per lab if necessary
os.remove('hiveapi.tsv')
os.remove('hiveTEMP.tsv')
os.remove('Crandallapi.tsv')
os.remove('CrandallTEMP.tsv')