-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* fix broken file names * Added ngs_id_script.py and template docs * Added ngs_id_script.py and template dataset * message Please enter the commit message for your changes. Lines starting * updated script Co-authored-by: hadleyking <[email protected]>
- Loading branch information
1 parent
0d1b402
commit 260b325
Showing
1 changed file
with
230 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
|
||
import os | ||
import requests | ||
import json | ||
import csv | ||
import pandas as pd | ||
pd.options.mode.chained_assignment = None # removes warning message from overwriting | ||
|
||
api_url = "https://beta-api.argosdb.org/records/search" | ||
HIVE_results = [] | ||
Crandall_results = [] | ||
HIVE_data = [{ | ||
"bcoid": "ARGOS_000019", | ||
"offset": 1, | ||
"limit": 10000 | ||
}] | ||
Crandall_data = [{ | ||
"bcoid": "ARGOS_000025", | ||
"offset": 1, | ||
"limit": 10000 | ||
}] | ||
|
||
### Need BCO for Pond NGS Data | ||
|
||
# defines function to get HIVE Lab specific data | ||
def get_HIVE(): | ||
for item in HIVE_data: | ||
response = requests.post(api_url, json=item) | ||
HIVE_results.append(response.json()) | ||
with open('hiveapi.json', 'w', newline = '', encoding='utf-8') as f: | ||
json.dump(HIVE_results,f, ensure_ascii=False, indent=4) | ||
|
||
#Convert json to tsv and make keys into column headers | ||
with open('hiveapi.json') as jsonfile: | ||
data = json.load(jsonfile) | ||
records=data[0]['recordlist'] | ||
datafile = open('hiveTEMP.tsv','w', newline = '') | ||
tsvwriter=csv.writer(datafile, delimiter= '\t') | ||
count=0 | ||
for record in records: | ||
if count==0: | ||
header = record.keys() | ||
tsvwriter.writerow(header) | ||
count+=1 | ||
tsvwriter.writerow(record.values()) | ||
#Read/write tsv - writes appropriate headers for ngs_id then writes corresponding columns from ngsQC file | ||
with open('hiveTEMP.tsv', 'r') as source: | ||
reader = csv.reader(source, delimiter='\t') | ||
with open('hiveapi.tsv', 'w', newline = '') as result: | ||
writer=csv.writer(result, delimiter='\t') | ||
headings=next(reader) | ||
#append headers for ngs_id | ||
writer.writerow(['organism_name', 'leaf_node', 'genome_assembly_id', 'taxonomy_id', 'bioproject','biosample','sra_run_id','ngs_read_file_source','ref_org','isolate_identifiers','selection_notes','lab_name','files_processed']) | ||
# These columns need to be updated/changed to reflect new columns added to ngs_id | ||
for r in reader: | ||
writer.writerow([r[3],r[4],r[6],r[5],r[11],r[12],r[23],r[13]]) | ||
datafile.close() | ||
get_HIVE() | ||
|
||
data_hl = pd.read_table('hiveapi.tsv', sep='\t', on_bad_lines='skip') | ||
|
||
df_hl = data_hl | ||
#This line originally filtered assembly ids | ||
df_hl=df_hl[df_hl['sra_run_id'].isnull() | ~df_hl[df_hl['sra_run_id'].notnull()].duplicated(subset='sra_run_id',keep='first')] | ||
df_hl.lab_name = 'HIVE Lab' | ||
df_hl.files_processed = 'ngsQC_HL' | ||
|
||
#for record in response.json()['recordlist']: | ||
# if record['genome_assembly_id'] not in assemblies: | ||
# assemblies.append(record['genome_assembly_id']) | ||
# os.system(f"efetch -db assembly -id {record['genome_assembly_id']} -format docsum > test5/{record['genome_assembly_id']}.xml") | ||
#print(response.status_code) | ||
|
||
def get_Crandall(): | ||
for item in Crandall_data: | ||
response = requests.post(api_url, json=item) | ||
Crandall_results.append(response.json()) | ||
with open('Crandallapi.json', 'w', newline = '', encoding='utf-8') as f: | ||
json.dump(Crandall_results,f, ensure_ascii=False, indent=4) | ||
#Convert json to tsv and make keys into column headers | ||
with open('Crandallapi.json') as jsonfile: | ||
data = json.load(jsonfile) | ||
records=data[0]['recordlist'] | ||
datafile = open('CrandallTEMP.tsv','w', newline = '') | ||
tsvwriter=csv.writer(datafile, delimiter= '\t') | ||
count=0 | ||
for record in records: | ||
if count==0: | ||
header = record.keys() | ||
tsvwriter.writerow(header) | ||
count+=1 | ||
tsvwriter.writerow(record.values()) | ||
|
||
|
||
#Read/write tsv - writes appropriate headers for ngs_id then writes corresponding columns from ngsQC file | ||
# | ||
# | ||
# Need to figure out how to pull assembly id for corresponding Biosample | ||
with open('CrandallTEMP.tsv', 'r') as source: | ||
reader = csv.reader(source, delimiter='\t') | ||
with open('Crandallapi.tsv', 'w', newline = '') as result: | ||
writer=csv.writer(result, delimiter='\t') | ||
headings=next(reader) | ||
#append headers for ngs_id | ||
#### | ||
#### ngsQC_Crandall hasn't been updated for v9 - this will need to be edited | ||
##### | ||
writer.writerow(['organism_name', 'leaf_node', 'genome_assembly_id', 'taxonomy_id', 'bioproject','biosample','sra_run_id','ngs_read_file_source','ref_org','isolate_identifiers','selection_notes','lab_name','files_processed']) | ||
# These columns need to be updated/changed to reflect new columns added to ngs_id | ||
for r in reader: | ||
writer.writerow([r[3],r[4],r[6],r[5],r[11],r[12],r[13],r[14]]) | ||
|
||
datafile.close() | ||
get_Crandall() | ||
|
||
|
||
data_c = pd.read_table('Crandallapi.tsv', sep='\t', on_bad_lines='skip') | ||
df_c = data_c | ||
#This line originally filtered assembly ids | ||
df_c=df_c[df_c['sra_run_id'].isnull() | ~df_c[df_c['sra_run_id'].notnull()].duplicated(subset='sra_run_id',keep='first')] | ||
df_c.lab_name = 'Crandall Lab' | ||
df_c.files_processed = 'ngsQC_Crandall' | ||
|
||
#def get_Pond(): | ||
# for item in Pond_data: | ||
# response = requests.post(api_url, json=item) | ||
# Pond_results.append(response.json()) | ||
# with open('Pondapi.json', 'w', newline = '', encoding='utf-8') as f: | ||
# json.dump(Pond_results,f, ensure_ascii=False, indent=4) | ||
# | ||
#Convert json to tsv and make keys into column headers | ||
# with open('Pondapi.json') as jsonfile: | ||
# data = json.load(jsonfile) | ||
# records=data[0]['recordlist'] | ||
# datafile = open('Pondapi.tsv','w', newline = '') | ||
# tsvwriter=csv.writer(datafile, delimiter= '\t') | ||
# count=0 | ||
# for record in records: | ||
# if count==0: | ||
# header = record.keys() | ||
# tsvwriter.writerow(header) | ||
# count+=1 | ||
# tsvwriter.writerow(record.values()) | ||
|
||
|
||
#Read/write tsv - writes appropriate headers for ngs_id then writes corresponding columns from ngsQC file | ||
# | ||
# | ||
# Need to figure out how to pull assembly id for corresponding Biosample | ||
# with open('Pondapi.tsv', 'r+') as source: | ||
# reader = csv.reader(source, delimiter='\t') | ||
|
||
# with open('Pondapi.tsv', 'r+', newline = '') as result: | ||
# writer=csv.writer(result, delimiter='\t') | ||
# headings=next(reader) | ||
#append headers for ngs_id | ||
# writer.writerow(['organism_name', 'leaf_node', 'genome_assembly_id', 'taxonomy_id', 'bioproject','biosample','sra_run_id','ngs_read_file_source','ref_org','isolate_identifiers','selection_notes','lab_name','files_processed']) | ||
|
||
|
||
# These columns need to be updated/changed to reflect new columns added to ngs_id | ||
# for r in reader: | ||
# writer.writerow([r[3],r[4],r[6],r[5],r[11],r[12],r[23],r[13]]) | ||
|
||
|
||
|
||
# datafile.close() | ||
|
||
#get_Pond() | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
dfs = [df_hl, df_c] | ||
# | ||
#### dfs = [df_hl, df_c, df_p] | ||
# | ||
combined_file = pd.concat(dfs) | ||
dfinal=combined_file | ||
#Populate Reference Orgs | ||
def ref_org(row): | ||
if row['genome_assembly_id'] == 'GCA_000865725.1': # (A/Puerto Rico/8/1934(H1N1)) | ||
return "Yes" | ||
elif row['genome_assembly_id'] == 'GCA_009858895.3': #isolate Wuhan-Hu-1 | ||
return "Yes" | ||
elif row['genome_assembly_id'] == 'GCA_001558355.2': #LT2 | ||
return "Yes" | ||
elif row['genome_assembly_id'] == 'GCA_000857325.2': #Marburg | ||
return "Yes" | ||
elif row['genome_assembly_id'] == 'GCA_003102975.1': #HXB2 | ||
return "Yes" | ||
else: | ||
return "No" | ||
dfinal=dfinal.assign(ref_org=dfinal.apply(ref_org, axis =1)) | ||
|
||
#Populate selection_notes for all organisms in ARGOS Bioproject | ||
def selection_notes(row): | ||
if row['bioproject'] == 'PRJNA231221': | ||
return "Belongs to FDA-ARGOS PRJNA231221." | ||
elif row['bioproject'] == 'PRJNA726840': | ||
return "Coding-complete Genome sequences for SARS-CoV-2 B.1.1.7 and B.1.351 Variants from Metro Manila, Philippines, outlined in the following paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281087/" | ||
elif row['bioproject'] == 'PRJNA729484': | ||
return "Raw sequencing reads were collected for the SARS-CoV-2 P.1 variant in Northeast Brazil, outlined in this paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321350/" | ||
elif row['bioproject'] == 'PRJNA791622' and row['lab_name'] == 'Pond Lab': | ||
return "For omicron, we are selecting EPI_ISL_6913953. Sequencing was conducted on Illumina MiSeq, has high coverage, and a consistent quality score across all base calls above 30. Raw reads are available at https://www.ncbi.nlm.nih.gov/sra/SRX13486794, and a full description of the patient harboring the virus is supplied with the following publication https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab1072/6494531?login=true. The patient was one of the first two known COVID-19 cases classified as omicron in Japan. To put the collection date of 28 November 2021 in perspective, the first known omicron sample was collected on 8 November 2021. Raw reads from South Africa are available, but the average phred quality score is much lower for those samples." | ||
elif row['bioproject'] == 'PRJNA791622' and row['lab_name'] == 'HIVE Lab': | ||
return "Raw sequencing reads were collected as part of a fusogenicity and pathogenicity study, outlined in the following paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942852/" | ||
elif row['bioproject'] == 'PRJNA603194': | ||
return "SARS-CoV-2 original isolate from human lung metagenome from Wuhan." | ||
elif row['bioproject'] == 'PRJEB12890': | ||
return "List of SRA IDs retrieved using search string in SRA 'txid211044[Organism:exp].' The SRA ID was selected based on NCBI search filters Source: RNA, Type: genome, Library layout: paired, Platform: Illumina. Project National Collection of Pathogenic Viruses (NCPV) UK sequences well-characterised, authenticated human pathogenic viruses." | ||
|
||
dfinal=dfinal.assign(selection_notes=dfinal.apply(selection_notes, axis=1)) | ||
dfinal=dfinal.sort_values('organism_name', ascending=True) | ||
dfinal.to_csv('ngs_id_from_api.tsv', sep = '\t', index = False) | ||
|
||
#clean up files | ||
os.remove('Crandallapi.json') | ||
os.remove('hiveapi.json') | ||
#comment out lines below to keep tsv per lab if necessary | ||
os.remove('hiveapi.tsv') | ||
os.remove('hiveTEMP.tsv') | ||
os.remove('Crandallapi.tsv') | ||
os.remove('CrandallTEMP.tsv') |