Skip to content
/ ASSMN Public

[TGRS 2020] The official repo for the paper "Adaptive Spectral-Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification".

License

Notifications You must be signed in to change notification settings

DotWang/ASSMN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Spectral–Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification (TGRS 2020)

Di Wang, Bo Du, Liangpei Zhang and Yonghao Xu

Update 2021.07: ASSMN won the Highly Cited Paper.

Framework

Usage (Pytorch implementation)

  1. Install Pytorch 1.1 with Python 3.5.

  2. Clone this repo.

git clone https://github.com/DotWang/ASSMN.git
  1. Training and evaluation with trainval.py.

    For example, for Indian Pines dataset, if SeMN and SaMN are all employed:

CUDA_VISIBLE_DEVICES=0 python trainval.py \
	--dataset 'indian' \
	--dr-num 4 --dr-method 'pca' \
	--mi -1 --ma 1 \
	--half-size 13 --rsz 27 \
	--experiment-num 10 \
	--lr 1e-2 --epochs 200 --batch-size 16 \
	--scheme 2 --strategy 's2' \
	--spec-time-steps 2 \
	--group 'alternate' --seq 'cascade' \
	--npi-num 2

    Then the assessment results are recorded in the corresponding *.mat file and the generated model is saved.

  1. Predicting with the previous stored model through infer.py
CUDA_VISIBLE_DEVICES=0 python infer.py \
      --dataset 'indian' \
      --mi -1 --ma 1 \
      --half-size 13 --rsz 27 \
      --bz 50000 \
      --scheme 2 --strategy 's2' 

    and then produce the final classification map.

Paper and Citation

If this repo is useful for your research, please cite our paper.

@ARTICLE{wd_2021_assmn,
  author={D. {Wang} and B. {Du} and L. {Zhang} and Y. {Xu}},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Adaptive Spectral–Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification}, 
  year={2021},
  volume={59},
  number={3},
  pages={2461-2477},
  doi={10.1109/TGRS.2020.2999957}
  }

Acknowledgement

Thanks Andrea Palazzi for providing the Pytorch implementation of Convolutional LSTM!

Relevant Projects

[1] Image-level/Patch-free Hyperspectral Image Classification
    Fully Contextual Network for Hyperspectral Scene Parsing, IEEE TGRS, 2021 | Paper | Github
    Di Wang, Bo Du, and Liangpei Zhang

[2] Graph Convolution based Hyperspectral Image Classification
    Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification, IEEE TNNLS, 2023 | Paper | Github
    Di Wang, Bo Du, and Liangpei Zhang

[3] Neural Architecture Search for Hyperspectral Image Classification
    HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel Neural Architecture Search, IEEE TNNLS, 2023 | Paper | Github
    Di Wang, Bo Du, Liangpei Zhang, and Dacheng Tao

[4] ImageNet Pretraining and Transformer based Hyperspectral Image Classification
    DCN-T: Dual Context Network with Transformer for Hyperspectral Image Classification, IEEE TIP, 2023 | Paper | Github
    Di Wang, Jing Zhang, Bo Du, Liangpei Zhang, and Dacheng Tao

About

[TGRS 2020] The official repo for the paper "Adaptive Spectral-Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages