Cross compile espeak-ng for aarch64 Linux
# Cross compile for aarch64 Linux
# Alsa
git clone https://github.com/alsa-project/alsa-lib
cd alsa-lib
Cross compile espeak-ng for aarch64 Linux
# Cross compile for aarch64 Linux
# Alsa
git clone https://github.com/alsa-project/alsa-lib
cd alsa-lib
import sys | |
with open(sys.argv[1], 'r', encoding='utf-8') as file: | |
content = file.read() | |
lines = [] | |
for line in content.splitlines(): | |
if line.startswith('?') or line.startswith('<i>?'): | |
line = line.replace('?', '') | |
line = line.replace('<i>?', '<i>') |
These are NOT product / license keys that are valid for Windows activation.
These keys only select the edition of Windows to install during setup, but they do not activate or license the installation.
/** | |
Supress @everyone and @here mentions across all Discord servers. | |
1. Open https://discord.com | |
2. Extract the token from dev tools -> Local Storage -> token | |
3. Run | |
*/ | |
const token = "your token"; | |
const headers = { | |
authorization: token, |
arch -x86_64 cmake -G Ninja -B build -DGGML_METAL=1 .
arch -x86_64 cmake --build build
wget https://github.com/thewh1teagle/vibe/raw/main/samples/short.wav
arch -x86_64 ./main --no-prints -m '/Users/user/Library/Application Support/github.com.thewh1teagle.vibe/ggml-medium-q8_0.bin' -f short.wav
Build for android and ios with clang
# IOS arm64
xcrun --sdk iphoneos --show-sdk-path
clang -target arm64-apple-ios -isysroot $(xcrun --sdk iphoneos --show-sdk-path) -o main main.c
# Android arm64
export NDK="$HOME/Library/Android/sdk/ndk/$(ls -1 $HOME/Library/Android/sdk/ndk | sort | tail -n 1)"
export CC="$NDK/toolchains/llvm/prebuilt/darwin-x86_64/bin/aarch64-linux-android35-clang"
""" | |
git clone https://github.com/troyliu0105/pyspeexaec | |
python3 -m venv venv | |
source venv/bin/activate | |
pip install soundfile numpy pybind11 | |
CC=clang++ python setup.py install | |
wget https://github.com/thewh1teagle/aec-rs/releases/download/audio-files/rec.wav | |
wget https://github.com/thewh1teagle/aec-rs/releases/download/audio-files/echo.wav |
''' | |
Using the emotion representation model | |
rec_result only contains {'feats'} | |
granularity="utterance": {'feats': [*768]} | |
granularity="frame": {feats: [T*768]} | |
python main.py | |
''' | |
from funasr import AutoModel |