Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save teknium1/c006ae162b9a717fcb6b0e3be9110e4a to your computer and use it in GitHub Desktop.
Save teknium1/c006ae162b9a717fcb6b0e3be9110e4a to your computer and use it in GitHub Desktop.
Merging QLoRA weights with quantized model
import torch
import peft
import json
import shutil
from peft.utils import _get_submodules
import os
import bitsandbytes as bnb
from bitsandbytes.functional import dequantize_4bit
from peft import PeftModel
from transformers import AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer, BitsAndBytesConfig, CodeLlamaTokenizer
import gc
import copy
def dequantize_model(model, tokenizer, to='./dequantized_model', dtype=torch.bfloat16, device="cuda"):
"""
'model': the peftmodel you loaded with qlora.
'tokenizer': the model's corresponding hf's tokenizer.
'to': directory to save the dequantized model
'dtype': dtype that the model was trained using
'device': device to load the model to
"""
# Delete the model object if it exists
if os.path.exists(to):
shutil.rmtree(to)
os.makedirs(to, exist_ok=True)
cls = bnb.nn.Linear4bit
with torch.no_grad():
for name, module in model.named_modules():
if isinstance(module, cls):
print(f"Dequantizing `{name}`...")
quant_state = copy.deepcopy(module.weight.quant_state)
quant_state[2] = dtype
weights = dequantize_4bit(module.weight.data, quant_state=quant_state, quant_type="nf4").to(dtype)
new_module = torch.nn.Linear(module.in_features, module.out_features, bias=None, dtype=dtype)
new_module.weight = torch.nn.Parameter(weights)
new_module.to(device=device, dtype=dtype)
parent, target, target_name = _get_submodules(model, name)
setattr(parent, target_name, new_module)
# a hack, setting this to avoid hf's saving error because hf
# itself does not support saving a model that is registered to be loaded in 4bit.
model.is_loaded_in_4bit = False
print("Saving dequantized model...")
model.save_pretrained(to)
tokenizer.save_pretrained(to)
config_data = json.loads(open(os.path.join(to, 'config.json'), 'r').read())
config_data.pop("quantization_config", None)
config_data.pop("pretraining_tp", None)
with open(os.path.join(to, 'config.json'), 'w') as config:
config.write(json.dumps(config_data, indent=2))
return model
model_path = 'NousResearch/Llama-2-13b-hf'
adapter_path = 'ChrisHayduk/QuerySurge-AI'
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
try:
print(f"Starting to load the model {model_path} into memory")
model = LlamaForCausalLM.from_pretrained(
model_path,
load_in_4bit=True,
torch_dtype=torch.bfloat16,
quantization_config=quantization_config,
device_map={"": 0}
)
print(model)
tok = LlamaTokenizer.from_pretrained(model_path)
model = dequantize_model(model, tok, to='/content/drive/MyDrive/QuerySurge AI/dequantized_model')
print(model)
model = PeftModel.from_pretrained(model = model, model_id = adapter_path)
print(model)
model = model.merge_and_unload()
print(model)
print(f"Successfully loaded the model {model_path} into memory")
except Exception as e:
print(f"An error occurred: {e}")
# Delete the model object if it exists
if 'model' in locals():
del model
# Clear the GPU cache
torch.cuda.empty_cache()
# Run the garbage collection
gc.collect()
print("Model, GPU cache, and garbage have been cleared.")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment