Skip to content

Instantly share code, notes, and snippets.

@jurbanhost
jurbanhost / country-bounding-boxes.py
Created September 15, 2022 12:50 — forked from graydon/country-bounding-boxes.py
country bounding boxes
# extracted from http//www.naturalearthdata.com/download/110m/cultural/ne_110m_admin_0_countries.zip
# under public domain terms
country_bounding_boxes = {
'AF': ('Afghanistan', (60.5284298033, 29.318572496, 75.1580277851, 38.4862816432)),
'AO': ('Angola', (11.6400960629, -17.9306364885, 24.0799052263, -4.43802336998)),
'AL': ('Albania', (19.3044861183, 39.624997667, 21.0200403175, 42.6882473822)),
'AE': ('United Arab Emirates', (51.5795186705, 22.4969475367, 56.3968473651, 26.055464179)),
'AR': ('Argentina', (-73.4154357571, -55.25, -53.628348965, -21.8323104794)),
'AM': ('Armenia', (43.5827458026, 38.7412014837, 46.5057198423, 41.2481285671)),
library(RPostgres)
# Get and read the PDF
path <- file.path("os2.pdf")
pdf <- readBin(con = path, what = raw(), n = file.info(path)$size)
# Open it
browseURL(path)
# Connect to default DB and put seralized raw pdf in a data.frame
ks.default <- function(rows) seq(2, max(3, rows %/% 4))
many_kmeans <- function(x, ks = ks.default(nrow(x)), ...) {
ldply(seq_along(ks), function(i) {
cl <- kmeans(x, centers = ks[i], ...)
data.frame(obs = seq_len(nrow(x)), i = i, k = ks[i], cluster = cl$cluster)
})
}
all_hclust <- function(x, ks = ks.default(nrow(x)), point.dist = "euclidean", cluster.dist = "ward") {