Every time you choose to apply a rule(s), explicitly state the rule(s) in the output. You can abbreviate the rule description to a single word or phrase.
[Brief description ]
- [more description]
- [more description]
- [more description]
This document describes the HTTP communication of LibreLinkUp which functions as follower app to receive cgm data. Some data in the responses were masked.
This dump was created on an android device with LibreLinkUp app. Capturing was done with HttpToolkit over adb.
AWS 학습 링크집 시리즈
// ==UserScript== | |
// @name GeekNews Helper | |
// @namespace https://news.hada.io/ | |
// @version 0.2 | |
// @description GeekNews helper | |
// @author nezz | |
// @include https://news.hada.io/* | |
// @grant none | |
// ==/UserScript== |
import requests | |
from bs4 import BeautifulSoup | |
def get_recent_article(menuid, page=1): | |
""" | |
search.menuid: 게시판 별 아이디 | |
search.page: 게시판 페이지 번호 | |
articleid: 게시글 아이디 | |
""" | |
url = f'https://cafe.naver.com/joonggonara/ArticleList.nhn?search.clubid=10050146&search.menuid={menuid}&search.boardtype=L&search.page={page}&userDisplay=50' |
import requests | |
from bs4 import BeautifulSoup | |
from pprint import pprint | |
import json | |
import time | |
def get_list(): | |
"""메인 -> 식품,생활,유아동 -> 유아동,출산 -> 기저귀""" | |
# TODO infinite scroll 처리 |
# https://www.quantopian.com/posts/technical-analysis-indicators-without-talib-code | |
import numpy | |
import pandas as pd | |
import math as m | |
#Moving Average | |
def MA(df, n): | |
MA = pd.Series(pd.rolling_mean(df['Close'], n), name = 'MA_' + str(n)) | |
df = df.join(MA) |
import datetime | |
n = datetime.datetime.now() | |
n.isocalendar() | |
# (2017, 45, 1) | |
n = datetime.datetime(2017, 11, 5) | |
n.isocalendar() | |
# (2017, 44, 7) |
아 | |
휴 | |
어 | |
것 | |
나 | |
너 | |
저 | |
소인 | |
소생 | |
저희 |