Last active
December 27, 2024 08:37
-
-
Save Chillee/f86675147366a7a0c6e244eaa78660f7 to your computer and use it in GitHub Desktop.
PT 2.0 Benchmarks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch._inductor.config | |
import time | |
torch._inductor.config.triton.cudagraphs = False | |
torch.set_float32_matmul_precision('high') | |
def bench(f, name=None, iters=100, warmup=5, display=True, profile=False): | |
for _ in range(warmup): | |
f() | |
if profile: | |
with torch.profiler.profile() as prof: | |
f() | |
prof.export_chrome_trace(f"{name if name is not None else 'trace'}.json") | |
torch.cuda.synchronize() | |
begin = time.time() | |
for _ in range(iters): | |
f() | |
torch.cuda.synchronize() | |
us_per_iter = (time.time()-begin)*1e6/iters | |
if name is None: | |
res = us_per_iter | |
else: | |
res= f"{name}: {us_per_iter}us" | |
if display: | |
print(res) | |
return res | |
def f1(a, b, c, d): | |
a = a.relu() | |
b = b.tanh() | |
e = a * b | |
f = (c + 2).cos() | |
return (e + f) * d | |
inp = [torch.randn(2**24, device='cuda') for _ in range(4)] | |
f = f1 | |
nf = torch.compile(f) | |
bench(lambda: f(*inp), name="eager") | |
bench(lambda: nf(*inp), name="PT 2.0") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.nn import * | |
torch.set_float32_matmul_precision('high') | |
def bench(f, name=None, iters=100, warmup=5, display=True, profile=False): | |
import time | |
for _ in range(warmup): | |
f() | |
if profile: | |
with torch.profiler.profile() as prof: | |
f() | |
prof.export_chrome_trace(f"{name if name is not None else 'trace'}.json") | |
torch.cuda.synchronize() | |
begin = time.time() | |
for _ in range(iters): | |
f() | |
torch.cuda.synchronize() | |
us_per_iter = (time.time()-begin)*1e6/iters | |
if name is None: | |
res = us_per_iter | |
else: | |
res= f"{name}: {us_per_iter:.2f}us" | |
if display: | |
print(res) | |
return res | |
import torchvision.models as models | |
mod = models.resnet18().eval().cuda() | |
opt_mod = torch.compile(mod, mode="reduce-overhead") | |
inp = torch.randn(1, 3, 224, 224).cuda() | |
with torch.no_grad(): | |
# Eager: 1938.18us | |
bench(lambda: mod(inp), "Eager") | |
# torch.compile (default): 953.96us | |
# torch.compile (reduce-overhead): 744.02us | |
bench(lambda: opt_mod(inp), "torch.compile (reduce-overhead)") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from triton.testing import do_bench | |
def get_flops(N, get_kernels=False): | |
A = torch.randn(N, N, device='cuda', dtype=torch.float16) | |
B = torch.randn(N, N, device='cuda', dtype=torch.float16) | |
def f(): | |
return torch.mm(A, B) | |
if get_kernels: | |
with torch.profiler.profile() as prof: | |
f() | |
for e in prof.events(): | |
if "gemm" in e.name or "triton" in e.name or "gemv" in e.name: | |
print(f"{N}: {e.name}") | |
timer = e.cuda_time/1e3 | |
timer = do_bench(f) | |
iters_per_second = 1e3/timer | |
flops = A.shape[0] * A.shape[1] * B.shape[1] * 2 | |
flops_achieved = iters_per_second * flops/1e12 | |
print(f"{N}: {flops_achieved:.2f}TF/s") | |
for N in range(1, 4096): | |
get_flops(N) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
torch.set_float32_matmul_precision('high') | |
import torch._inductor.config | |
torch._inductor.config.debug = True | |
def bench(f, name=None, iters=100, warmup=5, display=True, profile=False): | |
import time | |
for _ in range(warmup): | |
f() | |
if profile: | |
with torch.profiler.profile() as prof: | |
f() | |
prof.export_chrome_trace(f"{name if name is not None else 'trace'}.json") | |
torch.cuda.synchronize() | |
begin = time.time() | |
for _ in range(iters): | |
f() | |
torch.cuda.synchronize() | |
us_per_iter = (time.time()-begin)*1e6/iters | |
if name is None: | |
res = us_per_iter | |
else: | |
res= f"{name}: {us_per_iter:.3f}us" | |
if display: | |
print(res) | |
return res | |
def get_bandwidth(name, f): | |
iters_per_second = 1e6/bench(f, display=False) | |
bytes_accessed = N**2*4*3 | |
print(f"{name}: {iters_per_second * bytes_accessed/1e9:.2f}GB") | |
N = 2**14 | |
def f(a, b): | |
return a + b | |
A = torch.randn(N, N, device='cuda') | |
B = torch.randn(N, N, device='cuda') | |
# eager: 1389.84GB | |
get_bandwidth("eager", lambda: f(A, B)) | |
# torch.compile: 1388.19GB | |
get_bandwidth("torch.compile", lambda: torch.compile(f)(A, B)) | |
def f2(a, b): | |
return a + b.t() | |
A = torch.randn(N, N, device='cuda') | |
B = torch.randn(N, N, device='cuda') | |
# eager: 904.01GB | |
get_bandwidth("eager", lambda: f2(A, B)) | |
# torch.compile: 1334.89GB | |
get_bandwidth("torch.compile", lambda: torch.compile(f2)(A, B)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from triton.testing import do_bench | |
def get_flops(N, get_kernels=False): | |
A = torch.randn(N, N, device='cuda', dtype=torch.float16) | |
B = torch.randn(N, N, device='cuda', dtype=torch.float16) | |
def f(): | |
return torch.mm(A, B) | |
if get_kernels: | |
with torch.profiler.profile() as prof: | |
f() | |
for e in prof.events(): | |
if "gemm" in e.name or "triton" in e.name or "gemv" in e.name: | |
print(f"{N}: {e.name}") | |
timer = e.cuda_time/1e3 | |
timer = do_bench(f) | |
iters_per_second = 1e3/timer | |
flops = A.shape[0] * A.shape[1] * B.shape[1] * 2 | |
flops_achieved = iters_per_second * flops/1e12 | |
print(f"{N}: {flops_achieved:.2f}TF/s") | |
for N in range(1, 4096): | |
get_flops(N) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torch.autograd as autograd | |
torch.set_default_device('cuda') | |
import torch._inductor.config | |
torch._inductor.config.triton.unique_kernel_names = True | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.assert_indirect_indexing = False | |
D = 2048 | |
E = 8 | |
for D in [1024, 2048, 4096, 8192, 16384]: | |
def bench(f, name=None, iters=1000, warmup=5, display=True, profile=False): | |
import time | |
from triton.testing import do_bench | |
for _ in range(warmup): | |
f() | |
if profile: | |
with torch.profiler.profile() as prof: | |
f() | |
prof.export_chrome_trace(f"{name if name is not None else 'trace'}.json") | |
us_per_iter = do_bench(lambda: f())*1000 | |
print(f"{name}: {(1e6/us_per_iter) * 2 * D * D * 4 / 1e9} GB/s") | |
return 0 | |
def cuda_indexing(W, score_idxs, x): | |
return W[score_idxs] @ x | |
def python_indexing(W, score_idxs, x): | |
return W[score_idxs[0]] @ x, W[score_idxs[1]] @ x | |
W = torch.randn(E, D, D) | |
x = torch.randn(D) | |
score_idxs = torch.tensor([3, 5]) | |
compiled_cuda = torch.compile(cuda_indexing, dynamic=False) | |
print(f"D={D}") | |
bench(lambda: python_indexing(W, score_idxs, x), "python indexing") | |
bench(lambda: cuda_indexing(W, score_idxs, x), "eager CUDA indexing") | |
bench(lambda: compiled_cuda(W, score_idxs, x), "compiled CUDA indexing") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment