Edukira joan

Bilketa (multzo-teoria)

Wikipedia, Entziklopedia askea
A eta B bi multzoen bilketatik AB beste multzo bat sortzen da, bildura deiturikoa, A eta B multzoetako elementu guztiak dituena.

Matematikan, multzo-teoriaren barruan, bilketa multzoen artean definitzen den eragiketa bat da. Eragiketa horrek multzo bat sortuko du, bildura multzoa deiturikoa, zeinek multzoetako elementu guztiak biltzen dituen. Bilketa adierazteko, ikurra erabiltzen da, eta bil irakurtzen da. Adibidez, A eta B multzoetako elementuen bilketa honela adierazten da:

, (A bil B irakurtzen da).
Sinboloa
Izena Esanahia Adibideak
Ahoskera
Adarra
Bilketa (A eta B multzoen bildura, hots, A-koak edo B-koak edo bietakoak diren elementuen multzoa)
«a bil be»
«... bil ...»
Multzo-teoria

A eta B multzoak kontuan izanda, AB A-ko, B-ko edo bietako elementu guztiak biltzen dituen multzoa da:

Adibidea

{1, 2, 3, 4} U {5, 2, 1} = {1, 2, 3, 4, 5}

Kontuan izan multzoen bilketan errepikatutako elementuak behin bakarrik agertzen dira, multzoek ezin baitute elementu errepikaturik izan.

Bildura orokortua

[aldatu | aldatu iturburu kodea]

Bi multzo baino gehiagoko multzo kopuru mugatu baten bildura defini daiteke:

A1, ..., An multzoen bilduma finitu baten bildura, bilduma horretan multzo bakoitzeko elementu guztiak biltzen dituen multzoa da:

· Multzo-familia indizeduna izanik, bildura orokortua honela adierazten da:

Beraz,

Multzoen bilketaren propietateak

[aldatu | aldatu iturburu kodea]

Izan bitez A, B, C multzoak.

multzo bat eta bere osagarria multzoarekiko baditugu, eta multzoen bildura da.

A eta B multzoak baditugu, non (A-k parte du B), orduan

Banatze propietatea betetzen du ebakidurarekin

Ikus, gainera

[aldatu | aldatu iturburu kodea]

Kanpo estekak

[aldatu | aldatu iturburu kodea]