Bilketa (multzo-teoria)
Matematikan, multzo-teoriaren barruan, bilketa multzoen artean definitzen den eragiketa bat da. Eragiketa horrek multzo bat sortuko du, bildura multzoa deiturikoa, zeinek multzoetako elementu guztiak biltzen dituen. Bilketa adierazteko, ikurra erabiltzen da, eta bil irakurtzen da. Adibidez, A eta B multzoetako elementuen bilketa honela adierazten da:
- , (A bil B irakurtzen da).
Sinboloa
|
Izena | Esanahia | Adibideak |
---|---|---|---|
Ahoskera | |||
Adarra | |||
∪
|
Bilketa | (A eta B multzoen bildura, hots, A-koak edo B-koak edo bietakoak diren elementuen multzoa) «a bil be» |
|
«... bil ...» | |||
Multzo-teoria |
Definizioa
[aldatu | aldatu iturburu kodea]A eta B multzoak kontuan izanda, AB A-ko, B-ko edo bietako elementu guztiak biltzen dituen multzoa da:
- Adibidea
{1, 2, 3, 4} U {5, 2, 1} = {1, 2, 3, 4, 5}
Kontuan izan multzoen bilketan errepikatutako elementuak behin bakarrik agertzen dira, multzoek ezin baitute elementu errepikaturik izan.
Bildura orokortua
[aldatu | aldatu iturburu kodea]Bi multzo baino gehiagoko multzo kopuru mugatu baten bildura defini daiteke:
A1, ..., An multzoen bilduma finitu baten bildura, bilduma horretan multzo bakoitzeko elementu guztiak biltzen dituen multzoa da:
· Multzo-familia indizeduna izanik, bildura orokortua honela adierazten da:
Beraz,
Multzoen bilketaren propietateak
[aldatu | aldatu iturburu kodea]Izan bitez A, B, C multzoak.
- Multzo osagarrien batuketa
multzo bat eta bere osagarria multzoarekiko baditugu, eta multzoen bildura da.
- Azpimultzoen bilketa
- A eta B multzoak baditugu, non (A-k parte du B), orduan
Banatze propietatea betetzen du ebakidurarekin