Mine sisu juurde

p-rühm

Allikas: Vikipeedia

p-rühm ehk primaarne rühm ehk p-primaarne rühm on rühm, mille kõigi elementide järk võrdub fikseeritud algarvu p mõne naturaalarvulise astendajaga astmega[1].

Teiste sõnadega, p-rühm on rühm, mille kõik elemendid peale ühikelemendi on p-elemendid, see tähendab elemendid, mille aste astendajaga pn võrdub n mingi positiivse naturaalarvulise väärtuse korral ühikelemendiga 1.

Tähistused

[muuda | muuda lähteteksti]

Kui jutt on mitmest p-rühmast, mille puhul p väärtus võib olla erinev, siis võidakse kokku leppida kasutada teisi tähti ning rääkida ka näiteks q-, r- ja s-rühmadest. Välditakse n-tähte, et ei tekiks segiajamist n-rühmaga.

p konkreetse väärtuse puhul võib tähise p sellega asendada ning rääkida näiteks 2-rühmast või 3-rühmast.

Lõplikud p-rühmad

[muuda | muuda lähteteksti]
 Pikemalt artiklis Lõplik p-rühm

Lõplike rühmade teoorias on tegeldud lõplike rühmade kirjeldamisega lõplike p-rühmade kaudu ning lihtsate lõplike rühmade kirjeldamisega 2-rühmade kaudu.

Lõplikke p-rühmi on püütud kirjeldada näiteks Abeli alamrühmade järgi või p-automorfismide kaudu.

Näiteks tsükliline rühm C6 ei ole tsükliline rühm, sest ta sisaldab 6. järku elemente, aga 6 ei ole algarvu aste.

Ka sümmeetriline rühm S3 ei ole p-rühm, sest ta sisaldab 2. ja 3. järgu elemente, aga need järgud ei ole ühe ja sellesama algarvu astmed.

Lõpmatud p-rühmad

[muuda | muuda lähteteksti]

p-rühmi on kasutatud Burnside'i probleemi lahendamisel.

On tõestatud, et lokaalselt lõplik p-rühm ei ole lihtne.

Teoreemid lõplike p-rühmade kohta ei pruugi olla üldjuhule ülekantavad. Näiteks on olemas lokaalselt lõplik p-rühm, millel pole mittetriviaalseid Abeli normaalseid alamrühmi ning lokaalselt lõplik p-rühm, mis langeb kokku oma kommutandiga.

  1. 0 on arvatud naturaalarvuks; ühikelemendi järk on p0=1.