Ortografía
Esta página o sección necesita una revisión de ortografía y gramática. Puedes ayudar editándolo
PSK (Phase Shift Keying)[ editar ]
s
P
S
K
(
t
)
=
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
cos
(
ω
c
t
+
φ
k
)
=
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
cos
(
ω
c
t
)
cos
(
φ
k
)
⏟
I
k
−
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
sin
(
ω
c
t
)
sin
(
φ
k
)
⏟
Q
k
cos
2
x
+
sin
2
x
=
1
→
I
k
2
+
Q
k
2
=
1
{\displaystyle {\begin{aligned}&s_{PSK}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\cos \left(\omega _{c}t+\varphi _{k}\right)=}\\&A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\cos \left(\omega _{c}t\right)\underbrace {\cos \left(\varphi _{k}\right)} _{I_{k}}-A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\sin \left(\omega _{c}t\right)\underbrace {\sin \left(\varphi _{k}\right)} _{Q_{k}}}}\\&\cos ^{2}x+\sin ^{2}x=1\to \\&I_{k}^{2}+Q_{k}^{2}=1\\\end{aligned}}}
Dependiendo del numero de niveles tenemos diferentes tipos de PSK
BPSK (Binary Phase Shift Keying)[ editar ]
Tambien llamada PRK (Phase Reversal Keying).
Constellation diagram for BPSK.
s
B
P
S
K
(
t
)
=
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
cos
(
ω
c
t
+
φ
k
)
=
φ
k
=
{
0
,
π
}
→
s
B
P
S
K
(
t
)
=
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
cos
(
ω
c
t
)
cos
(
φ
k
)
⏟
I
k
{\displaystyle {\begin{aligned}&s_{BPSK}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\cos \left(\omega _{c}t+\varphi _{k}\right)=}\\&\varphi _{k}=\left\{0,\pi \right\}\to s_{BPSK}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\cos \left(\omega _{c}t\right)\underbrace {\cos \left(\varphi _{k}\right)} _{I_{k}}}\\\end{aligned}}}
φ
k
{\displaystyle \varphi _{k}}
I
k
{\displaystyle I_{k}}
0
{\displaystyle 0}
+
1
{\displaystyle +1}
π
{\displaystyle \pi }
−
1
{\displaystyle -1}
Por lo que vemos, para este caso particular de PSK, la señal puede ser modelada como una codificacion polar modulada por un coseno
x
B
P
S
K
(
t
)
=
A
c
∑
k
=
−
∞
∞
I
k
⋅
p
(
t
−
k
T
s
)
cos
(
ω
c
t
)
x
I
(
t
)
=
A
c
∑
k
=
−
∞
∞
I
k
⋅
p
(
t
−
k
T
s
)
,
x
Q
(
t
)
=
0
G
¯
I
(
f
)
=
G
p
o
l
a
r
(
f
)
=
A
2
T
s
sinc
2
(
T
s
f
)
G
x
(
f
)
=
G
I
(
f
−
f
c
)
+
G
I
(
f
+
f
c
)
4
+
G
Q
(
f
−
f
c
)
+
G
Q
(
f
+
f
c
)
4
→
G
x
(
f
)
=
G
I
(
f
±
f
c
)
4
→
G
x
B
P
S
K
(
f
)
=
A
2
T
s
sinc
2
(
T
s
(
f
±
f
c
)
)
4
{\displaystyle {\begin{aligned}&x_{BPSK}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{I_{k}\cdot p\left(t-kT_{s}\right)\cos \left(\omega _{c}t\right)}\\&x_{I}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{I_{k}\cdot p\left(t-kT_{s}\right)},x_{Q}(t)=0\\&{\bar {G}}_{I}(f)=G_{polar}(f)=A^{2}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)\\&G_{x}(f)={\frac {G_{I}(f-f_{c})+G_{I}(f+f_{c})}{4}}+{\frac {G_{Q}(f-f_{c})+G_{Q}(f+f_{c})}{4}}\to \\&G_{x}(f)={\frac {G_{I}(f\pm f_{c})}{4}}\to \\&G_{x_{BPSK}}(f)={\frac {A^{2}T_{s}\operatorname {sinc} ^{2}\left(T_{s}\left(f\pm f_{c}\right)\right)}{4}}\\\end{aligned}}}
Para la probabilidad de error (BER):
BER de BPSK
QPSK (Quadrature Phase Shift Keying)[ editar ]
s
P
S
K
(
t
)
=
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
cos
(
ω
c
t
+
φ
k
)
=
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
cos
(
ω
c
t
)
cos
(
φ
k
)
⏟
I
k
−
A
c
∑
k
=
−
∞
∞
p
(
t
−
k
T
s
)
sin
(
ω
c
t
)
sin
(
φ
k
)
⏟
Q
k
{\displaystyle {\begin{aligned}&s_{PSK}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\cos \left(\omega _{c}t+\varphi _{k}\right)=}\\&A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\cos \left(\omega _{c}t\right)\underbrace {\cos \left(\varphi _{k}\right)} _{I_{k}}-A_{c}\sum \limits _{k=-\infty }^{\infty }{p\left(t-kT_{s}\right)\sin \left(\omega _{c}t\right)\underbrace {\sin \left(\varphi _{k}\right)} _{Q_{k}}}}\\\end{aligned}}}
Existe más de un tipo de QPSK, la que se utiliza en la práctica:
Constellation diagram for QPSK with Gray coding. Each adjacent symbol only differs by one bit.
φ
k
{\displaystyle \varphi _{k}}
I
k
{\displaystyle I_{k}}
Q
k
{\displaystyle Q_{k}}
+
π
╱
4
{\displaystyle +{}^{\pi }\!\!\diagup \!\!{}_{4}\;}
1
2
{\displaystyle {\frac {1}{\sqrt {2}}}}
1
2
{\displaystyle {\frac {1}{\sqrt {2}}}}
+
3
π
╱
4
{\displaystyle +{}^{3\pi }\!\!\diagup \!\!{}_{4}\;}
−
1
2
{\displaystyle -{\frac {1}{\sqrt {2}}}}
1
2
{\displaystyle {\frac {1}{\sqrt {2}}}}
−
3
π
╱
4
{\displaystyle -{}^{3\pi }\!\!\diagup \!\!{}_{4}\;}
−
1
2
{\displaystyle -{\frac {1}{\sqrt {2}}}}
−
1
2
{\displaystyle -{\frac {1}{\sqrt {2}}}}
−
π
╱
4
{\displaystyle -{}^{\pi }\!\!\diagup \!\!{}_{4}\;}
1
2
{\displaystyle {\frac {1}{\sqrt {2}}}}
−
1
2
{\displaystyle -{\frac {1}{\sqrt {2}}}}
s
Q
P
S
K
(
t
)
=
A
c
∑
k
=
−
∞
∞
I
k
⋅
p
(
t
−
k
T
s
)
cos
(
ω
c
t
)
−
A
c
∑
k
=
−
∞
∞
Q
k
⋅
p
(
t
−
k
T
s
)
sin
(
ω
c
t
)
s
I
(
t
)
=
A
c
∑
k
=
−
∞
∞
I
k
⋅
p
(
t
−
k
T
s
)
s
Q
(
t
)
=
A
c
∑
k
=
−
∞
∞
Q
k
⋅
p
(
t
−
k
T
s
)
{\displaystyle {\begin{aligned}&s_{QPSK}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{I_{k}\cdot p\left(t-kT_{s}\right)\cos \left(\omega _{c}t\right)-A_{c}\sum \limits _{k=-\infty }^{\infty }{Q_{k}\cdot p\left(t-kT_{s}\right)\sin \left(\omega _{c}t\right)}}\\&s_{I}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{I_{k}\cdot p\left(t-kT_{s}\right)}\\&s_{Q}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{Q_{k}\cdot p\left(t-kT_{s}\right)}\\\end{aligned}}}
Ahora, para sacar la densidad espectral de potencia:
s
I
(
t
)
=
A
c
∑
k
=
−
∞
∞
I
k
⋅
p
(
t
−
k
T
s
)
→
I
k
=
{
1
2
,
−
1
2
,
−
1
2
,
1
2
}
G
¯
x
(
f
)
=
σ
a
k
2
⋅
R
s
|
P
(
f
)
|
2
+
m
a
k
2
⋅
R
s
2
∑
k
=
−
∞
∞
|
P
(
k
R
s
)
|
2
δ
(
f
−
k
R
s
)
|
P
(
f
)
|
2
=
T
s
2
sinc
2
(
T
s
f
)
m
I
k
=
1
2
⋅
1
4
+
(
−
1
2
)
⋅
1
4
+
(
−
1
2
)
⋅
1
4
+
1
2
⋅
1
4
=
0
P
I
k
=
(
1
2
)
2
⋅
1
4
+
(
−
1
2
)
2
⋅
1
4
+
(
−
1
2
)
2
⋅
1
4
+
(
1
2
)
2
⋅
1
4
=
1
2
σ
I
k
2
=
P
I
k
−
m
I
k
2
=
1
2
G
¯
x
(
f
)
=
σ
a
k
2
⋅
R
s
|
P
(
f
)
|
2
+
m
a
k
2
⏟
0
⋅
R
s
2
∑
k
=
−
∞
∞
|
P
(
k
R
s
)
|
2
δ
(
f
−
k
R
s
)
=
σ
a
k
2
⏟
(
1
╱
2
)
2
⋅
R
s
⋅
T
s
2
sinc
2
(
T
s
f
)
=
G
¯
I
(
f
)
=
A
c
2
σ
a
k
2
T
s
sinc
2
(
T
s
f
)
=
A
c
2
2
T
s
sinc
2
(
T
s
f
)
{\displaystyle {\begin{aligned}&s_{I}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{I_{k}\cdot p\left(t-kT_{s}\right)}\to \\&I_{k}=\left\{{\frac {1}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},{\frac {1}{\sqrt {2}}}\right\}\\&{\bar {G}}_{x}(f)=\sigma _{a_{k}}^{2}\cdot R_{s}\left|P(f)\right|^{2}+m_{a_{k}}^{2}\cdot R_{s}^{2}\sum \limits _{k=-\infty }^{\infty }{\left|P(kR_{s})\right|^{2}\delta \left(f-kR_{s}\right)}\\&\left|P(f)\right|^{2}=T_{s}^{2}\operatorname {sinc} ^{2}\left(T_{s}f\right)\\&m_{I_{k}}={\frac {1}{\sqrt {2}}}\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)\cdot {\frac {1}{4}}+{\frac {1}{\sqrt {2}}}\cdot {\frac {1}{4}}=0\\&P_{I_{k}}=\left({\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}+\left({\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}={\frac {1}{2}}\\&\sigma _{I_{k}}^{2}=P_{I_{k}}-m_{I_{k}}^{2}={\frac {1}{2}}\\&{\bar {G}}_{x}(f)=\sigma _{a_{k}}^{2}\cdot R_{s}\left|P(f)\right|^{2}+\underbrace {m_{a_{k}}^{2}} _{0}\cdot R_{s}^{2}\sum \limits _{k=-\infty }^{\infty }{\left|P(kR_{s})\right|^{2}\delta \left(f-kR_{s}\right)}=\underbrace {\sigma _{a_{k}}^{2}} _{\left({}^{1}\!\!\diagup \!\!{}_{2}\;\right)^{2}}\cdot R_{s}\cdot T_{s}^{2}\operatorname {sinc} ^{2}\left(T_{s}f\right)=\\&{\bar {G}}_{I}(f)=A_{c}^{2}\sigma _{a_{k}}^{2}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)={\frac {A_{c}^{2}}{2}}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)\\\end{aligned}}}
s
Q
(
t
)
=
A
c
∑
k
=
−
∞
∞
Q
k
⋅
p
(
t
−
k
T
s
)
→
Q
k
=
{
1
2
,
1
2
,
−
1
2
,
−
1
2
}
→
m
a
k
=
0
,
σ
a
k
2
=
1
2
m
Q
k
=
1
2
⋅
1
4
+
1
2
⋅
1
4
+
(
−
1
2
)
⋅
1
4
+
(
−
1
2
)
⋅
1
4
=
0
P
Q
k
=
(
1
2
)
2
⋅
1
4
+
(
1
2
)
2
⋅
1
4
+
(
−
1
2
)
2
⋅
1
4
+
(
−
1
2
)
2
⋅
1
4
=
1
2
σ
Q
k
2
=
P
Q
k
−
m
Q
k
2
=
1
2
G
¯
Q
(
f
)
=
A
c
2
σ
a
k
2
T
s
sinc
2
(
T
s
f
)
=
A
c
2
2
T
s
sinc
2
(
T
s
f
)
{\displaystyle {\begin{aligned}&s_{Q}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{Q_{k}\cdot p\left(t-kT_{s}\right)}\to \\&Q_{k}=\left\{{\frac {1}{\sqrt {2}}},{\frac {1}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}}\right\}\to m_{a_{k}}=0,\sigma _{a_{k}}^{2}={\frac {1}{2}}\\&m_{Q_{k}}={\frac {1}{\sqrt {2}}}\cdot {\frac {1}{4}}+{\frac {1}{\sqrt {2}}}\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)\cdot {\frac {1}{4}}=0\\&P_{Q_{k}}=\left({\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}+\left({\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}+\left(-{\frac {1}{\sqrt {2}}}\right)^{2}\cdot {\frac {1}{4}}={\frac {1}{2}}\\&\sigma _{Q_{k}}^{2}=P_{Q_{k}}-m_{Q_{k}}^{2}={\frac {1}{2}}\\&{\bar {G}}_{Q}(f)=A_{c}^{2}\sigma _{a_{k}}^{2}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)={\frac {A_{c}^{2}}{2}}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)\\\end{aligned}}}
m
I
k
=
m
Q
k
=
0
σ
I
k
2
=
σ
Q
k
2
=
1
2
G
¯
I
(
f
)
=
G
¯
Q
(
f
)
=
A
c
2
σ
a
k
2
T
s
sinc
2
(
T
s
f
)
=
A
c
2
2
T
s
sinc
2
(
T
s
f
)
G
x
(
f
)
=
G
I
(
f
−
f
c
)
+
G
I
(
f
+
f
c
)
4
+
G
Q
(
f
−
f
c
)
+
G
Q
(
f
+
f
c
)
4
→
G
Q
P
S
K
(
f
)
=
2
G
I
/
Q
(
f
−
f
c
)
+
G
I
/
Q
(
f
+
f
c
)
4
=
G
I
/
Q
(
f
±
f
c
)
2
=
A
c
2
4
T
s
sinc
2
(
T
s
(
f
±
f
c
)
)
{\displaystyle {\begin{aligned}&m_{I_{k}}=m_{Q_{k}}=0\\&\sigma _{I_{k}}^{2}=\sigma _{Q_{k}}^{2}={\frac {1}{2}}\\&{\bar {G}}_{I}(f)={\bar {G}}_{Q}(f)=A_{c}^{2}\sigma _{a_{k}}^{2}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)={\frac {A_{c}^{2}}{2}}T_{s}\operatorname {sinc} ^{2}\left(T_{s}f\right)\\&G_{x}(f)={\frac {G_{I}(f-f_{c})+G_{I}(f+f_{c})}{4}}+{\frac {G_{Q}(f-f_{c})+G_{Q}(f+f_{c})}{4}}\to \\&G_{QPSK}(f)=2{\frac {G_{I/Q}(f-f_{c})+G_{I/Q}(f+f_{c})}{4}}={\frac {G_{I/Q}(f\pm f_{c})}{2}}={\frac {A_{c}^{2}}{4}}T_{s}\operatorname {sinc} ^{2}\left(T_{s}\left(f\pm f_{c}\right)\right)\\\end{aligned}}}
Para la probabilidad de error (BER):
BER de QPSK
Existe otro tipo de QPSK:
4PSK
φ
k
{\displaystyle \varphi _{k}}
I
k
{\displaystyle I_{k}}
Q
k
{\displaystyle Q_{k}}
0
{\displaystyle 0}
+
1
{\displaystyle +1}
0
{\displaystyle 0}
π
╱
2
{\displaystyle {}^{\pi }\!\!\diagup \!\!{}_{2}\;}
0
{\displaystyle 0}
+
1
{\displaystyle +1}
π
{\displaystyle \pi }
−
1
{\displaystyle -1}
0
{\displaystyle 0}
−
π
╱
2
{\displaystyle -{}^{\pi }\!\!\diagup \!\!{}_{2}\;}
0
{\displaystyle 0}
−
1
{\displaystyle -1}
s
Q
(
t
)
=
A
c
∑
k
=
−
∞
∞
I
k
⋅
p
(
t
−
k
T
s
)
→
I
k
=
{
+
1
,
0
,
−
1
,
0
}
m
a
k
=
+
1
⋅
1
4
+
0
⋅
1
4
+
(
−
1
)
⋅
1
4
+
0
⋅
1
4
=
0
P
a
k
=
+
1
2
⋅
1
4
+
0
⋅
1
4
+
(
−
1
)
2
⋅
1
4
+
0
⋅
1
4
=
1
2
σ
a
k
2
=
P
a
k
−
m
a
k
2
=
1
2
s
Q
(
t
)
=
A
c
∑
k
=
−
∞
∞
Q
k
⋅
p
(
t
−
k
T
s
)
→
Q
k
=
{
0
,
+
1
,
0
,
−
1
}
m
a
k
=
0
⋅
1
4
+
1
⋅
1
4
+
0
⋅
1
4
+
(
−
1
)
⋅
1
4
=
0
P
a
k
=
0
⋅
1
4
+
1
2
1
4
+
0
⋅
1
4
+
(
−
1
)
2
⋅
1
4
=
1
2
σ
a
k
2
=
P
a
k
−
m
a
k
2
=
1
2
{\displaystyle {\begin{aligned}&s_{Q}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{I_{k}\cdot p\left(t-kT_{s}\right)}\to \\&I_{k}=\left\{+1,0,-1,0\right\}\\&m_{a_{k}}=+1\cdot {\frac {1}{4}}+0\cdot {\frac {1}{4}}+\left(-1\right)\cdot {\frac {1}{4}}+0\cdot {\frac {1}{4}}=0\\&P_{a_{k}}=+1^{2}\cdot {\frac {1}{4}}+0\cdot {\frac {1}{4}}+\left(-1\right)^{2}\cdot {\frac {1}{4}}+0\cdot {\frac {1}{4}}={\frac {1}{2}}\\&\sigma _{a_{k}}^{2}=P_{a_{k}}-m_{a_{k}}^{2}={\frac {1}{2}}\\&s_{Q}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{Q_{k}\cdot p\left(t-kT_{s}\right)}\to \\&Q_{k}=\left\{0,+1,0,-1\right\}\\&m_{a_{k}}=0\cdot {\frac {1}{4}}+1\cdot {\frac {1}{4}}+0\cdot {\frac {1}{4}}+\left(-1\right)\cdot {\frac {1}{4}}=0\\&P_{a_{k}}=0\cdot {\frac {1}{4}}+1^{2}{\frac {1}{4}}+0\cdot {\frac {1}{4}}+\left(-1\right)^{2}\cdot {\frac {1}{4}}={\frac {1}{2}}\\&\sigma _{a_{k}}^{2}=P_{a_{k}}-m_{a_{k}}^{2}={\frac {1}{2}}\\\end{aligned}}}
G
4
P
S
K
(
f
)
=
A
c
2
4
T
s
sinc
2
(
T
s
(
f
±
f
c
)
)
{\displaystyle G_{4PSK}(f)={\frac {A_{c}^{2}}{4}}T_{s}\operatorname {sinc} ^{2}\left(T_{s}\left(f\pm f_{c}\right)\right)}
Para la probabilidad de error (BER):
BER de 4PSK
Como consecuencia final, vemos que la media y varianza de una señal PSK es constante:
m
I
k
=
m
Q
k
=
0
σ
I
k
2
=
σ
Q
k
2
=
1
2
{\displaystyle {\begin{aligned}&m_{I_{k}}=m_{Q_{k}}=0\\&\sigma _{I_{k}}^{2}=\sigma _{Q_{k}}^{2}={\frac {1}{2}}\\\end{aligned}}}
Como se ha visto, la media y varianza de la señal no cambia, por lo que la densidad espectral de potencia será siempre igual independientemente del número de símbolos usados:
G
P
S
K
(
f
)
=
A
c
2
4
T
s
sinc
2
(
T
s
(
f
±
f
c
)
)
{\displaystyle G_{PSK}(f)={\frac {A_{c}^{2}}{4}}T_{s}\operatorname {sinc} ^{2}\left(T_{s}\left(f\pm f_{c}\right)\right)}
Constellation diagram for 8-PSK with Gray coding.
Para la probabilidad de error (BER):
BER de M-PSK
Signal doesn't cross zero, because only one bit of the symbol is changed at a time
Dual constellation diagram for π/4-QPSK. This shows the two separate constellations with identical Gray coding but rotated by 45° with respect to each other.