User:Hygiea10/Thābit ibn Qurra
Biography
[edit]Thābit was born in Harran in Upper Mesopotamia, which at the time was part of the Diyar Mudar subdivision of the al-Jazira region of the Abbasid Caliphate. Thābit belonged to the Sabians of Harran, a Hellenized Semitic polytheistic astral religion that still existed in ninth-century Harran.[1]
As a youth, Thābit worked as money changer in a marketplace in Harran until meeting Muḥammad ibn Mūsā, the oldest of three mathematicians and astronomers known as the Banū Mūsā. Thābit displayed such exceptional linguistic skills that ibn Mūsā chose him to come to Baghdad to be trained in mathematics, astronomy, and philosophy under the tutelage of the Banū Mūsā. Here, Thābit was introduced to not only a community of scholars but also to those who had significant power and influence in Baghdad.[2][3]
Thābit and his pupils lived in the midst of the most intellectually vibrant, and probably the largest, city of the time, Baghdad. Thābit came to Baghdad in the first place to work for the Banū Mūsā becoming a part of their circle and helping them translate Greek mathematical texts.[4] What is unknown is how Banū Mūsā and Thābit occupied himself with mathematics, astronomy, astrology, magic, mechanics, medicine, and philosophy. Later in his life, Thābit's patron was the Abbasid Caliph al-Mu'tadid (reigned 892–902), whom he became a court astronomer for.[4] Thābit became the Caliph's personal friend and courtier. Thābit died in Baghdad in 901. His son, Sinan ibn Thabit and grandson, Ibrahim ibn Sinan would also make contributions to the medicine and science.[5] By the end of his life, Thābit had managed to write 150 works on mathematics, astronomy, and medicine.[6]
Mathematics
[edit]In mathematics, Thābit derived an equation for determining amicable numbers. His proof of this rule is presented in the Treatise on the Derivation of the Amicable Numbers in an Easy Way. This was done while writing on the theory of numbers, extending their use to describe the ratios between geometrical quantities, a step which the Greeks did not take. Thābit's work on amicable numbers and number theory helped him to invest more heavily into the Geometrical relations of numbers establishing his Transversal (geometry) theorem.[7][8]
He is known for having calculated the solution to a chessboard problem involving an exponential series.[9]
He computed the volume of the paraboloid.[10]
He also described a generalization of Pythagoras' theorem.[11] He was able to provide proof of the theorem through dissection.[7] Thābit's contributions included proof of the Pythagoras' theorem and Euclid's fifth postulate.[12] In regards to the Pythagorean Theorem, Thābit used a method reduction and composition to find proof.[13] In regards to Euclid postulates, Thābit believed that geometry should be based on motion and more generally, physics.[14] With that in mind, his argument was that geometry was tied with the equality and differences of magnitudes of such things like lines and angles.[14] He would also write commentary for Archimedes's Liber Assumpta.
Physics
[edit]In physics, Thābit rejected the Peripatetic and Aristotelian notions of a "natural place" for each element. He instead proposed a theory of motion in which both the upward and downward motions are caused by weight, and that the order of the universe is a result of two competing attractions (jadhb): one of these being "between the sublunar and celestial elements", and the other being "between all parts of each element separately".[16] and in mechanics he was a founder of statics.[17] In addition, Thābit's Liber Karatonis contained proof of the law of the lever. This work was the result of combining Aristotelian and Archimedean ideas of dynamics and mechanics.[15]
One of Qurra's most important pieces of text is his work with the Kitab fi 'l-qarastun. This text consists of Arabic mechanical tradition.[18] Another piece of important text is Kitab fi sifat alqazn, which discussed concepts of equal-armed balance. Qurra was reportedly one of the first to write about the concept of equal-armed balance or at least to systematize the treatment.
Qurra sought to establish a relationship between forces of motion and the distance traveled by the mobile.[18]
Medicine
[edit]Thābit was well known as a physician and produced substantial number of medical treatises and commentaries. His works included general reference books such as al-Dhakhira fī ilm al-tibb (“A Treasurey of Medicine”), Kitāb al-Rawda fi l–tibb (“Book of the Garden of Medicine”), and al-Kunnash (“Collection”). He also produced specific works on topics such as gallstones; the treatment of diseases such as smallpox, measles, and conditions of the eye; and discussed veterinary medicine and the anatomy of birds. Thābit wrote commentaries on the works of Galen and others, including such works as De plantis ("On Plants"), part of the Corpus Aristotelicum.[19]
One account of Thābit's work as a physician is given in Ibn al-Qiftī's Ta’rikh al-hukamā, where Thābit is credited with healing a butcher who was presumed to be certain to die.[19]
Works
[edit]Only a few of Thābit's works are preserved in their original form.[citation needed]
- On the Sector-Figure which deals with Menelaus' theorem.[20]
- On the Composition of Ratios[20]
- Kitab fi 'l-qarastun (Book of the Steelyard) [18]
- Kitab fi sifat alwazn (Book on the Description of Weight)[18] - Short text on equal-armed balance
Additional works by Thābit include:
- Kitāb al-Mafrūdāt (Book of Data)
- Maqāla fīistikhrāj al-a‘dād al-mutahābba bi–suhūlat al-maslak ilā dhālika (Book on the Determination of Amicable Numbers)
- Kitāb fi Misāhat qat‘ almakhrūt alladhī yusammaā al-mukāfi’ (Book on the Measurement of the Conic Section Called Parabolic)
- Kitāb fī Sanat al-shams (Book on the Solar Year)
- Qawl fi’l–Sabab alladhī ju‘ilat lahu miyāh al-bahr māliha (Discourse on the Reason Why Seawater Is Salted)
- al-Dhakhira fī ilm al-tibb (A Treasury of Medicine)
- Kitāb fi ‘ilm al-‘ayn . . . (Book on the Science of the Eye…)
- Kitāb fi’l–jadarī wa’l–hasbā (Book on Smallpox and Measles)
- Masā’il su’ila ’anhā Thābit ibn Qurra al-Harrānī (Questions Posed to Thābit. . .)[19]
References
[edit]1: Hogenduk, Jan; Brentjes, Sonja (November 1989). "Notes On Thabit ibn Qurra and His Rule for Amicable Numbers" (PDF). Historia Mathematica. 16: 373–378 – via Research Gate
This is the sandbox page where you will draft your initial Wikipedia contribution.
If you're starting a new article, you can develop it here until it's ready to go live. If you're working on improvements to an existing article, copy only one section at a time of the article to this sandbox to work on, and be sure to use an edit summary linking to the article you copied from. Do not copy over the entire article. You can find additional instructions here. Remember to save your work regularly using the "Publish page" button. (It just means 'save'; it will still be in the sandbox.) You can add bold formatting to your additions to differentiate them from existing content. |
Article Draft
[edit]Lead
[edit]Article body
[edit]References
[edit]- ^ De Blois 1960–2007 ; Hämeen-Anttila 2006, p. 43, note 112 ; Van Bladel 2009, p. 65 ; Rashed 2009a, p. 646 ; Rashed 2009b, p. 21 ; Roberts 2017, pp. 253, 261–262 . Some scholars have also suggested that he adhered to Mandaeism, a Gnostic baptist sect whose members were likewise called 'Sabians' (see Drower 1960, pp. 111–112 ; Nasoraia 2012, p. 39 ).
- ^ Gingerich 1986 ; Rashed & Morelon 1960–2007 .
- ^ Rashed, Roshdi (2009-12-15). Thabit ibn Qurra: Science and Philosophy in Ninth-Century Baghdad (in French). Walter de Gruyter. ISBN 978-3-11-022079-7.
- ^ a b "Thābit ibn Qurrah | Arab mathematician, physician, and philosopher". Encyclopedia Britannica. Retrieved 2020-11-20.
- ^ "Thabit ibn Qurra". islamsci.mcgill.ca. Retrieved 2020-11-26.
- ^ Shloming, Robert (1970). "Thabit Ibn Qurra and the Pythagorean Theorem". The Mathematics Teacher. 63 (6): 519–528. doi:10.5951/MT.63.6.0519. ISSN 0025-5769. JSTOR 27958444.
- ^ a b Shloming, Robert (1970). "Thabit Ibn Qurra and the Pythagorean Theorem". The Mathematics Teacher. 63 (6): 519–528. doi:10.5951/MT.63.6.0519. ISSN 0025-5769. JSTOR 27958444.
- ^ Brentjes, Sonja; Hogendijk, Jan P (1989-11). "Notes on Thabit ibn Qurra and his rule for amicable numbers". Historia Mathematica. 16 (4): 373–378. doi:10.1016/0315-0860(89)90084-0. ISSN 0315-0860.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Masood, Ehsad (2009). Science and Islam A History. Icon Books Ltd. pp. 48–49.
- ^ Smith, David Eugen (1925). History of Mathematics, Volume II. p. 685.
- ^ Aydin Sayili (Mar 1960). "Thâbit ibn Qurra's Generalization of the Pythagorean Theorem". Isis. 51 (1): 35–37. doi:10.1086/348837. JSTOR 227603. S2CID 119868978.
- ^ "Thabit ibn Qurra". islamsci.mcgill.ca. Retrieved 2020-11-26.
- ^ Sayili, Aydin (1960). "Thâbit ibn Qurra's Generalization of the Pythagorean Theorem". Isis. 51 (1): 35–37. doi:10.1086/348837. ISSN 0021-1753. JSTOR 227603. S2CID 119868978.
- ^ a b Sabra, A. I. (1968). "Thābit Ibn Qurra on Euclid's Parallels Postulate". Journal of the Warburg and Courtauld Institutes. 31: 12–32. doi:10.2307/750634. ISSN 0075-4390. JSTOR 750634. S2CID 195056568.
- ^ a b Shloming, Robert (1970). "Thabit Ibn Qurra and the Pythagorean Theorem". The Mathematics Teacher. 63 (6): 519–528. doi:10.5951/MT.63.6.0519. ISSN 0025-5769. JSTOR 27958444.
- ^ Mohammed Abattouy (2001). "Greek Mechanics in Arabic Context: Thabit ibn Qurra, al-Isfizarı and the Arabic Traditions of Aristotelian and Euclidean Mechanics", Science in Context 14, p. 205-206. Cambridge University Press.
- ^ Holme 2010 .
- ^ a b c d Abattouy, Mohammed (June 2001). "Greek Mechanics in Arabic Context: Thābit ibn Qurra, al-Isfizārī and the Arabic Traditions of Aristotelian and Euclidean Mechanics". Science in Context. 14 (1–2): 179–247. doi:10.1017/s0269889701000084. ISSN 0269-8897. S2CID 145604399.
- ^ a b c "Thābit Ibn Qurra, Al-Ṣābiʾ Al-Ḥarrānī", Complete Dictionary of Scientific Biography, vol. 13, Detroit, MI: Charles Scribner's Sons, pp. 288–295, 2008, retrieved 2022-10-21
- ^ a b Van Brummelen, Glen (2010-01-26). "Review of "On the Sector-Figure and Related Texts"". MAA Reviews. Retrieved 2017-05-12.