Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 6 Jul 2016 (v1), last revised 25 Jan 2017 (this version, v2)]
Title:H0LiCOW V. New COSMOGRAIL time delays of HE0435-1223: $H_0$ to 3.8% precision from strong lensing in a flat $Λ$CDM model
View PDFAbstract:We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply-imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE0435-1223 from 13-year light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modeling of the main deflectors and line of sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat $\Lambda$CDM with free matter and energy density, we find $H_0$ = 71.9 +2.4 -3.0 km/s/Mpc and $\Omega_{\Lambda}$ = 0.62 +0.24 -0.35 . This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The TDSL and Planck joint constraints are $H_0$ = 69.2 +1.4 -2.2 km/s/Mpc, $\Omega_{\Lambda}$ = 0.70 +0.01 -0.01 and $\Omega_k$ = 0.003 +0.004 -0.006 in open $\Lambda$CDM and $H_0$ = 79.0 +4.4 -4.2 km/s/Mpc, $\Omega_{de}$ = 0.77 +0.02 -0.03 and $w$ = -1.38 +0.14 -0.16 in flat $w$CDM. Combined with Planck and Baryon Acoustic Oscillation data, when relaxing the constraints on the numbers of relativistic species we find $N_{eff}$ = 3.34 +0.21 -0.21 and when relaxing the total mass of neutrinos we find 0.182 eV. In an open $w$CDM in combination with Planck and CMB lensing we find $H_0$ = 77.9 +5.0 -4.2 km/s/Mpc, $\Omega_{de}$ = 0.77 +0.03 -0.03, $\Omega_k$ = -0.003 +0.004 -0.004 and $w$ = -1.37 +0.18 -0.23.
Submission history
From: Vivien Bonvin [view email][v1] Wed, 6 Jul 2016 20:00:04 UTC (3,621 KB)
[v2] Wed, 25 Jan 2017 08:29:41 UTC (3,615 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.