Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Animals and Worm Isolation
2.2. RNA Sequencing
2.3. Mass Spectrometry
2.4. Protein Identification and Quantification
2.5. Annotation of Novel Gene and Splicing Variants Using RNA-Seq Data
2.6. Functional Annotation
2.7. Annotation of Single-Nucleotide Variants (SNVs)
2.8. Annotation of Non-Coding RNA Genes
2.9. Annotation of Single-Amino-Acid Variants (SAAVs)
2.10. Transcript Quantification
2.11. Analysis of Transcriptome and Proteome Abundance Levels
3. Results
3.1. Improving the A. costaricensis Genome Annotation
3.1.1. Novel Protein-Coding Genes and Transcript Variants
3.1.2. Novel Non-Coding Genes
3.1.3. Functional Annotation
3.2. Protein Identification Using a Customized Protein-Sequence Database
3.3. Transcriptome and Proteome Quantification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salzberg, S.L. Next-generation genome annotation: We still struggle to get it right. Genome Biol. 2019, 20, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solovyev, V.; Kosarev, P.; Seledsov, I.; Vorobyev, D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006, 7 (Suppl. 1), S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burge, C.; Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997, 268, 78–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majoros, W.H.; Pertea, M.; Salzberg, S.L. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20, 2878–2879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alioto, T.; Blanco, E.; Parra, G.; Guigó, R. Using geneid to Identify Genes. Curr. Protoc. Bioinform. 2018, 64, e56. [Google Scholar] [CrossRef]
- Stanke, M.; Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005, 33, 465–467. [Google Scholar] [CrossRef] [Green Version]
- Besemer, J.; Borodovsky, M. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33, W451–W454. [Google Scholar] [CrossRef] [Green Version]
- Scalzitti, N.; Jeannin-Girardon, A.; Collet, P.; Poch, O.; Thompson, J.D. A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms. BMC Genom. 2020, 21, 293. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.; Pearson, M.S.; Manda, S.S.; Choi, Y.J.; Field, M.; Eichenberger, R.M.; Mulvenna, J.; Nagaraj, S.H.; Fujiwara, R.T.; Gazzinelli-Guimaraes, P.; et al. Comprehensive analysis of the secreted proteome of adult necator americanus hookworms. PLoS Negl. Trop. Dis. 2020, 14(5), e0008237. [Google Scholar] [CrossRef]
- Keilwagen, J.; Hartung, F.; Paulini, M.; Twardziok, S.O.; Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform. 2018, 19, 189. [Google Scholar] [CrossRef]
- Puglia, G.D.; Prjibelski, A.D.; Vitale, D.; Bushmanova, E.; Schmid, K.J.; Raccuia, S.A. Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). BMC Genom. 2020, 21, 317. [Google Scholar] [CrossRef]
- Agosto, L.M.; Gazzara, M.R.; Radens, C.M.; Sidoli, S.; Baeza, J.; Garcia, B.A.; Lynch, K.W. Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing. Genome Res. 2019, 29, 2046–2055. [Google Scholar] [CrossRef]
- Da Silva, E.M.G.; Santos, L.G.C.; de Oliveira, F.S.; Freitas, F.C.d.P.; Parreira, V.d.S.C.; dos Santos, H.G.; Tavares, R.; Carvalho, P.C.; Neves-Ferreira, A.G.d.C.; Haibara, A.S.; et al. Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model. Cells 2021, 10, 1583. [Google Scholar] [CrossRef]
- Gupta, N.; Tanner, S.; Jaitly, N.; Adkins, J.N.; Lipton, M.; Edwards, R.; Romine, M.; Osterman, A.; Bafna, V.; Smith, R.D.; et al. Whole proteome analysis of post-translational modifications: Applications of mass-spectrometry for proteogenomic annotation. Genome Res. 2007, 17, 1362–1377. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Cha, S.W.; Merrihew, G.; He, Y.; Castellana, N.; Guest, C.; MacCoss, M.; Bafna, V. Proteogenomic Database Construction Driven from Large Scale RNA-seq Data. J. Proteome Res. 2014, 13, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ferrandez-Peral, L.; Zhan, X.; Alvarez-Estape, M.; Chiva, C.; Esteller-Cucala, P.; Garcia-Perez, R.; Julia, E.; Lizano, E.; Fornas, O.; Sabido, E.; et al. Transcriptome innovations in primates revealed by single-molecule long-read sequencing. Genome Res. 2022, 32, 1448–1462. [Google Scholar] [CrossRef]
- De Marchi, T.; Pyl, P.T.; Sjöström, M.; Klasson, S.; Sartor, H.; Tran, L.; Pekar, G.; Malmström, J.; Malmström, L.; Niméus, E. Proteogenomic Workflow Reveals Molecular Phenotypes Related to Breast Cancer Mammographic Appearance. J. Proteome Res. 2021, 20, 2983–3001. [Google Scholar] [CrossRef]
- Spencer, D.H.; Zhang, B.; Pfeifer, J. Single Nucleotide Variant Detection Using Next Generation Sequencing. In Clinical Genomics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 109–127. ISBN 9780124051737. [Google Scholar]
- Murphy, K.M.; Cooper, A.; Tobias, E.S. The Human Genome, Gene Regulation, and Genomic Variation. In Handbook of Pharmacogenomics and Stratified Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 41–56. ISBN 9780123868831. [Google Scholar]
- Quaglieri, A.; Flensburg, C.; Speed, T.P.; Majewski, I.J. Finding a suitable library size to call variants in RNA-Seq. BMC Bioinform. 2020, 21, 553. [Google Scholar] [CrossRef]
- Ma, S.; Menon, R.; Poulos, R.C.; Wong, J.W.H. Proteogenomic analysis prioritises functional single nucleotide variants in cancer samples. Oncotarget 2017, 8, 95841–95852. [Google Scholar] [CrossRef]
- Hahnel, S.R.; Zdraljevic, S.; Rodriguez, B.C.; Zhao, Y.; McGrath, P.T.; Andersen, E.C. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog. 2018, 14, e1007226. [Google Scholar] [CrossRef]
- Coghlan, A.; Tyagi, R.; Cotton, J.A.; Holroyd, N.; Rosa, B.A.; Tsai, I.J.; Laetsch, D.R.; Beech, R.N.; Day, T.A.; Hallsworth-Pepin, K.; et al. Comparative genomics of the major parasitic worms. Nat. Genet. 2019, 51, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Morera, P. Abdominal Angiostrongyliasis. In Hunter’s Tropical Medicine and Emerging Infectious Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 859–861. ISBN 9781416043904. [Google Scholar]
- Morera, P. Granulomas entéricos y linfáticos con intensa eosinofilia tisular producidos por un estrongilideo (Strongylata; Railliet y Henry, 1931). Acta Med. Costarric. 1967, 10, 257–265. [Google Scholar]
- Morera, P.; Céspedes, R. Angiostrongylus costaricensis n. sp. (Nematoda: Metastrongyloidea), a new lungworm occuring in man in Costa Rica. Rev. Biol. Trop. 1971, 50, 783–796. [Google Scholar] [CrossRef]
- Romero-Alegría, A.; Belhassen-García, M.; Velasco-Tirado, V.; Garcia-Mingo, A.; Alvela-Suárez, L.; Pardo-Lledias, J.; Sánchez, M.C. Angiostrongylus costaricensis: Systematic Review of Case Reports. Adv. Infect. Dis. 2014, 04, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Sandri, A.S.S.; Rodriguez, R.; Costa, M.M.; Porto, S.M.; Schwingel, D.; Vieira, M.I.B. High-dose enoxaparin in the treatment of abdominal angiostrongyliasis in Swiss mice. J. Helminthol. 2018, 92, 662–667. [Google Scholar] [CrossRef]
- Rebello, K.M.; Menna-Barreto, R.F.S.; Chagas-Moutinho, V.A.; Mota, E.M.; Perales, J.; Neves-Ferreira, A.G.C.; Oliveira-Menezes, A.; Lenzi, H. Morphological aspects of Angiostrongylus costaricensis by light and scanning electron microscopy. Acta Trop. 2013, 127, 191–198. [Google Scholar] [CrossRef]
- Mota, E.M.; Lenzi, H.L. Angiostrongylus costaricensis: Complete redescription of the migratory pathways based on experimental Sigmodon hispidus infection. Mem. Inst. Oswaldo Cruz 2005, 100, 407–420. [Google Scholar] [CrossRef] [Green Version]
- De Vasconcelos, D.I.B.; Mota, E.M.; Pelajo-Machado, M. Characterisation of the vascular pathology in Sigmodon hispidus (Rodentia: Cricetidae) following experimental infection with Angiostrongylus costaricensis (Nematoda: Metastrongylidae). Mem. Inst. Oswaldo Cruz 2017, 112, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Illumina TruSeq® Stranded Total RNA Sample Preparation Guide. Illumina Tech. Manuals. 2013. Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseqstrandedtotalrna/truseq-stranded-total-rna-sample-prep-user-supplied-list-from-15031048-e.pdf (accessed on 20 September 2022).
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Rebello, K.M.; Barros, J.S.L.; Mota, E.M.; Carvalho, P.C.; Perales, J.; Lenzi, H.L.; Neves-Ferreira, A.G.C. Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode. J. Proteom. 2011, 74, 1545–1559. [Google Scholar] [CrossRef]
- Santos, M.D.M.; Lima, D.B.; Fischer, J.S.G.; Clasen, M.A.; Kurt, L.U.; Camillo-Andrade, A.C.; Monteiro, L.C.; de Aquino, P.F.; Neves-Ferreira, A.G.C.; Valente, R.H.; et al. Simple, efficient and thorough shotgun proteomic analysis with PatternLab V. Nat. Protoc. 2022, 17, 1553–1578. [Google Scholar] [CrossRef]
- Kruegger, F. Babraham Bioinformatics—Trim Galore! Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 10 August 2020).
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Hoff, K.J.; Lomsadze, A.; Borodovsky, M.; Stanke, M. Whole-Genome Annotation with BRAKER; Humana: New York, NY, USA, 2019; Volume 1962, ISBN 9781493991730. [Google Scholar]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Biobam OmicsBox—Bioinformatics Made Easy, BioBam Bioinformatics. Available online: https://www.biobam.com/omicsbox/ (accessed on 10 August 2020).
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar] [CrossRef]
- Nawrocki, E.P.; Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013, 29, 2933–2935. [Google Scholar] [CrossRef] [Green Version]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, B.A.; Petrov, A.I.; Ribas, C.E.; Finn, R.D.; Bateman, A.; Szymanski, M.; Karlowski, W.M.; Seemann, S.E.; Gorodkin, J.; Cannone, J.J.; et al. RNAcentral 2021: Secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021, 49, D212–D220. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J. Software for Computing and Annotating Genomic Ranges. PLoS Comput. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Orre, L.M.; Johansson, H.J.; Huss, M.; Boekel, J.; Vesterlund, M.; Fernandez-Woodbridge, A.; Branca, R.M.M.; Lehtiö, J. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat. Commun. 2018, 9, 903. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Eraslan, B.; Wieland, T.; Hallström, B.; Hopf, T.; Zolg, D.P.; Zecha, J.; Asplund, A.; Li, L.; Meng, C.; et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 2019, 15, e8503. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, H.; Lin, W.; Hao, Y.; Ren, L.; Zhang, C.; Li, N.; Wei, H.; Jiang, Y.; He, F. Discovery of Novel Genes and Gene Isoforms by Integrating Transcriptomic and Proteomic Profiling from Mouse Liver. J. Proteome Res. 2014, 13, 2409–2419. [Google Scholar] [CrossRef]
- Zhu, X.-Q.; Korhonen, P.K.; Cai, H.; Young, N.D.; Nejsum, P.; von Samson-Himmelstjerna, G.; Boag, P.R.; Tan, P.; Li, Q.; Min, J.; et al. Genetic blueprint of the zoonotic pathogen Toxocara canis. Nat. Commun. 2015, 6, 6145. [Google Scholar] [CrossRef] [Green Version]
- Cotton, J.A.; Bennuru, S.; Grote, A.; Harsha, B.; Tracey, A.; Beech, R.; Doyle, S.R.; Dunn, M.; Hotopp, J.C.D.; Holroyd, N.; et al. The genome of Onchocerca volvulus, agent of river blindness. Nat. Microbiol. 2017, 2, 16216. [Google Scholar] [CrossRef]
- Crombie, T.A.; Zdraljevic, S.; Cook, D.E.; Tanny, R.E.; Brady, S.C.; Wang, Y.; Evans, K.S.; Hahnel, S.; Lee, D.; Rodriguez, B.C.; et al. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. eLife 2019, 8, e50465. [Google Scholar] [CrossRef]
- Eamsobhana, P.; Lim, P.E.; Solano, G.; Zhang, H.; Gan, X.; Yong, H. Sen Molecular differentiation of Angiostrongylus taxa (Nematoda: Angiostrongylidae) by cytochrome c oxidase subunit I (COI) gene sequences. Acta Trop. 2010, 116, 152–156. [Google Scholar] [CrossRef]
- Yong, H.-S.; Song, S.-L.; Eamsobhana, P.; Goh, S.-Y.; Lim, P.-E.; Chow, W.-L.; Chan, K.-G.; Abrahams-Sandi, E. Mitochondrial Genome Supports Sibling Species of Angiostrongylus costaricensis (Nematoda: Angiostrongylidae). PLoS ONE 2015, 10, e0134581. [Google Scholar] [CrossRef] [Green Version]
- Rojas, A.; Maldonado-Junior, A.; Mora, J.; Morassutti, A.; Rodriguez, R.; Solano-Barquero, A.; Tijerino, A.; Vargas, M.; Graeff-Teixeira, C. Abdominal angiostrongyliasis in the Americas: Fifty years since the discovery of a new metastrongylid species, Angiostrongylus costaricensis. Parasites Vectors 2021, 14, 374. [Google Scholar] [CrossRef]
- O’Neil, D.; Glowatz, H.; Schlumpberger, M. Ribosomal RNA Depletion for Efficient Use of RNA-Seq Capacity. In Current Protocols in Molecular Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–8. ISBN 0471142727. [Google Scholar]
- Zhao, S.; Zhang, Y.; Gamini, R.; Zhang, B.; Von Schack, D. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: PolyA+ selection versus rRNA depletion. Sci. Rep. 2018, 8, 4781. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Bansal, G.; Narang, A.; Basak, T.; Abbas, T.; Dash, D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 2016, 16, 2533–2544. [Google Scholar] [CrossRef]
- Payne, S.H. The utility of protein and mRNA correlation. Trends Biochem. Sci. 2015, 40, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Proffitt, J.M.; Glenn, J.; Cesnik, A.J.; Jadhav, A.; Shortreed, M.R.; Smith, L.M.; Kavanagh, K.; Cox, L.A.; Olivier, M. Proteomics in non-human primates: Utilizing RNA-Seq data to improve protein identification by mass spectrometry in vervet monkeys. BMC Genom. 2017, 18, 877. [Google Scholar] [CrossRef]
- Ren, Z.; Qi, D.; Pugh, N.; Li, K.; Wen, B.; Zhou, R.; Xu, S.; Liu, S.; Jones, A.R. Improvements to the Rice Genome Annotation Through Large-Scale Analysis of RNA-Seq and Proteomics Data Sets. Mol. Cell. Proteom. 2019, 18, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhou, R.; Xu, S.; Chen, X.; Hong, Y.; Lu, Q.; Liu, H.; Zhou, B.; Liang, X. Improving Gene Annotation of the Peanut Genome by Integrated Proteogenomics Workflow. J. Proteome Res. 2020, 19, 2226–2235. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 117793221989905. [Google Scholar] [CrossRef] [PubMed]
Annotation Source | Genes | mRNAs | Complete ORFs |
---|---|---|---|
WormBase | 13,417 | 13,411 | 12,154 |
BRAKER | 13,136 | 15,630 | 13,914 |
WormBase improved with BRAKER’s annotation | 14,588 | 27,788 | 21,584 |
Functional Annotation Status | Number of Sequences | Fraction of Sequences |
---|---|---|
Blast hits | 20,945 | 97% |
Interpro hits | 18,036 | 84% |
Blast hits and mapped GO terms | 17,343 | 80% |
Complete Blast2GO annotation | 15,612 | 72% |
Interpro hits and mapped GO terms | 10,847 | 50% |
No InterPro hits | 3548 | 16% |
No blast hits | 639 | 3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, E.M.G.; Rebello, K.M.; Choi, Y.-J.; Gregorio, V.; Paschoal, A.R.; Mitreva, M.; McKerrow, J.H.; Neves-Ferreira, A.G.d.C.; Passetti, F. Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach. Pathogens 2022, 11, 1273. https://doi.org/10.3390/pathogens11111273
da Silva EMG, Rebello KM, Choi Y-J, Gregorio V, Paschoal AR, Mitreva M, McKerrow JH, Neves-Ferreira AGdC, Passetti F. Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach. Pathogens. 2022; 11(11):1273. https://doi.org/10.3390/pathogens11111273
Chicago/Turabian Styleda Silva, Esdras Matheus Gomes, Karina Mastropasqua Rebello, Young-Jun Choi, Vitor Gregorio, Alexandre Rossi Paschoal, Makedonka Mitreva, James H. McKerrow, Ana Gisele da Costa Neves-Ferreira, and Fabio Passetti. 2022. "Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach" Pathogens 11, no. 11: 1273. https://doi.org/10.3390/pathogens11111273
APA Styleda Silva, E. M. G., Rebello, K. M., Choi, Y. -J., Gregorio, V., Paschoal, A. R., Mitreva, M., McKerrow, J. H., Neves-Ferreira, A. G. d. C., & Passetti, F. (2022). Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach. Pathogens, 11(11), 1273. https://doi.org/10.3390/pathogens11111273