On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences
Abstract
:1. Introduction
2. Preliminaries
2.1. Fuzzy Subsets
2.2. Tool for Counting Methods
- ,
- ,
- , and
- .
1 | ||||||||||||||||||||
1 | 1 | |||||||||||||||||||
1 | 2 | 1 | ||||||||||||||||||
1 | 3 | 3 | 1 | |||||||||||||||||
1 | 4 | 6 | 4 | 1 | ||||||||||||||||
1 | 5 | 10 | 10 | 5 | 1 | |||||||||||||||
1 | 6 | 15 | 20 | 15 | 6 | 1 | ||||||||||||||
1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | |||||||||||||
1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 | ||||||||||||
1 | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 1 |
2.3. Existing Works on Fuzzy Subsets
3. Methodologies
3.1. An Equivalence Relation on Fuzzy Subsets
- a.
- iff ;
- b.
- iff ; and
- c.
- iff .
- 1.
- In condition (a) the strict inequality () can be replaced byinequality without disturbing the equivalence. It concludes that the same equivalence class of fuzzy subsets can be drawn by either of the inequalities.
- 2.
- concludes that the cores ofandare equal in the condition (b).
- 3.
- From condition (c) of the above definition, it can be merely followed that two equivalent fuzzy subsets are the equal support. This condition is an integral part of the above equivalence relation, i.e., it cannot be redundant.
- 4.
- If, then. However, the converse is not true, viz. ifor even if,and, we count not confirm that
- 5.
- if, and only if, for eachthere exists a, such that.
3.2. A New Notion of Classifying Fuzzy Subsets
4. Results
4.1. The Number of -Level Fuzzy Subsets
- Case I
- Case II
- Case III
- Case IV
1 | ||||||||||||
2 | 1 | |||||||||||
4 | 5 | 2 | ||||||||||
8 | 19 | 18 | 6 | |||||||||
16 | 65 | 110 | 84 | 24 | ||||||||
32 | 211 | 570 | 750 | 480 | 120 | |||||||
64 | 665 | 2702 | 5460 | 5880 | 3240 | 720 |
- 1.
- The first three diagonals of the triangular array A038719 gave the following sequences in the OEIS: A000079 (the number of subsets of an-set,, A001047, and A038721 (the number of functionssuch thatcontainedfixed elements,and).
- 2.
- The last diagonal and next-to-last diagonal of the triangular array A038719 gave the sequences: A000142 (the number of permutations ofletters,,or factorial numbers) and A038720, respectively, in the OEIS.
1 | ||||||||||||
1 | 1 | |||||||||||
1 | 3 | 2 | ||||||||||
1 | 7 | 12 | 6 | |||||||||
1 | 15 | 50 | 60 | 24 | ||||||||
1 | 31 | 180 | 390 | 360 | 120 | |||||||
1 | 63 | 602 | 2100 | 3360 | 2520 | 720 |
- 1.
- The first four diagonals of the triangle A028246 gave the following sequences in the OEIS: A000012 (the all one′s sequence), A000225 (the number of nonempty subsets of-set, ), A028243 (the number of functionssuch thatcontained two fixed elements,and), and A028244 (the number of functions, such thatcontainedfixed elements,and).
- 2.
- The last seven external diagonals of the triangle A028246 gave the following sequences in the OEIS: A000142 (the number of permutations of letters,) and A001710 (number of even permutations of letters, ), A005460 (essentially Stirling numbers of the second kind, offset: 0,2), A005461 (essentially Stirling numbers of the second kind, offset: 1,2), A005462 (essentially Stirling numbers of the second kind, offset: 3,2), A005463 (essentially Stirling numbers of the second kind, offset: 4,2), and A005464 (essentially Stirling numbers of the second kind, offset: 5,2), respectively, in the OEIS.
4.2. Explicit Formulas of , and
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yager, R.R. Counting the number of classes in a fuzzy set. IEEE Trans. Syst. Man Cybern. 1993, 23, 257–264. [Google Scholar] [CrossRef]
- Cantor, G. Über eine elementare Frage der Mannigfaltigskeitslehre. Jahresber. DMV 1981, 1, 75–78. [Google Scholar]
- Nelsen, R.B.; Schmidt, H., Jr. Chains in power sets. Math. Mag. 1991, 64, 23–31. [Google Scholar] [CrossRef]
- Nkonkobe, S.; Murali, V. A study of a family of generating functions of Nelsen–Schmidt type and some identities on restricted barred preferential arrangements. Discret. Math. 2017, 340, 1122–1128. [Google Scholar] [CrossRef]
- OEIS Foundation Inc. The Online Encyclopedia of Integer Sequences. 2022. Available online: https://oeis.org/ (accessed on 18 January 2022).
- Murali, V. Ordered partitions and finite fuzzy sets. Far East J. Math. Sci. (FJMS) 2006, 21, 121–132. [Google Scholar]
- Mendelson, E. Races with ties. Math. Mag. 1982, 55, 170–175. [Google Scholar] [CrossRef]
- Gross, O.A. Preferential arrangement. Am. Math. Mon. 1962, 69, 4–8. [Google Scholar] [CrossRef]
- Nkonkobe, S.; Bényi, B.; Corcino, R.B.; Corcino, C.B. A combinatorial analysis of higher order generalised geometric polynomials: A generalisation of barred preferential arrangements. Discret. Math. 2020, 343, 111729. [Google Scholar] [CrossRef]
- Murali, V. Combinatorics of counting finite fuzzy subsets. Fuzzy Sets Syst. 2006, 157, 2403–2411. [Google Scholar] [CrossRef]
- Kannan, S.R.; Mohapatra, R.K.; Hong, T.-P. The invention of new sequences through classifying and counting fuzzy matrices. Soft Comput. 2021, 25, 9663–9676. [Google Scholar] [CrossRef]
- Dogra, S.; Pal, M. Picture fuzzy matrix and its application. Soft Comput. 2020, 24, 9413–9428. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, K. A note on an equivalence relation on fuzzy subgroups. Fuzzy Sets Syst. 1998, 95, 243–247. [Google Scholar] [CrossRef]
- Volf, A.C. Counting fuzzy subgroups and chains of subgroups. Fuzzy Syst. Artif. Intell. (FSAI) 2004, 10, 191–200. [Google Scholar]
- Tărnăuceanu, M. A new equivalence relation to classify the fuzzy subgroups of finite groups. Fuzzy Sets Syst. 2016, 289, 113–121. [Google Scholar] [CrossRef]
- Degang, C.; Jiashang, J.; Congxin, W.; Tsang, E.C.C. Some notes on equivalent fuzzy sets and fuzzy subgroups. Fuzzy Sets Syst. 2005, 152, 403–409. [Google Scholar] [CrossRef]
- Murali, V.; Makamba, B.B. On an equivalence of fuzzy subgroups II. Fuzzy Sets Syst. 2003, 136, 93–104. [Google Scholar] [CrossRef]
- Murali, V.; Makamba, B.B. Counting the number of fuzzy subgroups of an abelian group of order pnqm. Fuzzy Sets Syst. 2004, 144, 459–470. [Google Scholar] [CrossRef]
- Han, L.; Guo, X. The number of subgroup chains of finite nilpotent groups. Symmetry 2020, 12, 1537. [Google Scholar] [CrossRef]
- Ardekani, L.K.; Davvaz, B. On the number of fuzzy subgroups of dicyclic groups. Soft Comput. 2020, 24, 6183–6191. [Google Scholar] [CrossRef]
- Murali, V.; Makamba, B.B. Finite fuzzy sets. Int. J. Gen. Syst. 2005, 34, 61–75. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. Similarity relations and fuzzy orderings. Inf. Sci. 1971, 3, 177–200. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy Set Theory and Its Applications, 4th ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Van-Lint, J.H.; Wilson, R.M. A Course in Combinatorics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Tomescu, I. Introduction to Combinatorics; Collet’s Publishers Ltd.: London, UK, 1975. [Google Scholar]
- Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [Google Scholar] [CrossRef]
- Murali, V.; Makamba, B.B. On an equivalence of fuzzy subgroups I. Fuzzy Sets Syst. 2001, 123, 259–264. [Google Scholar] [CrossRef]
- Tǎrnǎuceanu, M.; Bentea, L. On the number of fuzzy subgroups of finite abelian groups. Fuzzy Sets Syst. 2008, 159, 1084–1096. [Google Scholar] [CrossRef]
- Murali, V. Fuzzy points of equivalent fuzzy subsets. Inf. Sci. 2004, 158, 277–288. [Google Scholar] [CrossRef]
- Murali, V. Equivalent finite fuzzy sets and Stirling numbers. Inf. Sci. 2005, 174, 251–263. [Google Scholar] [CrossRef]
- Oh, J.M. The number of chains of subgroups of a finite cyclic group. Eur. J. Comb. 2012, 33, 259–266. [Google Scholar] [CrossRef]
- Tărnăuceanu, M. The number of chains of subgroups of a finite elementary abelian p-group. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 65–68. [Google Scholar]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
0 | 1 | 1 | |||||||||
1 | 1 | 1 | 2 | ||||||||
2 | 1 | 2 | 1 | 4 | |||||||
3 | 1 | 3 | 3 | 1 | 8 | ||||||
4 | 1 | 4 | 6 | 4 | 1 | 16 | |||||
5 | 1 | 5 | 10 | 10 | 5 | 1 | 32 | ||||
6 | 1 | 6 | 15 | 20 | 15 | 6 | 1 | 64 | |||
7 | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | 128 | ||
8 | 1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 | 256 | |
9 | 1 | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 1 | 512 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
0 | 1 | 1 | |||||||
1 | 2 | 1 | 3 | ||||||
2 | 4 | 5 | 2 | 11 | |||||
3 | 8 | 19 | 18 | 6 | 51 | ||||
4 | 16 | 65 | 110 | 84 | 24 | 299 | |||
5 | 32 | 211 | 570 | 750 | 480 | 120 | 2163 | ||
6 | 64 | 665 | 2702 | 5460 | 5880 | 3240 | 720 | 18,731 | |
7 | 128 | 2059 | 12,138 | 35,406 | 57,120 | 52,080 | 25,200 | 5040 | 189,171 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | |||||||
1 | 1 | 1 | 2 | ||||||
2 | 1 | 3 | 2 | 6 | |||||
3 | 1 | 7 | 12 | 6 | 26 | ||||
4 | 1 | 15 | 50 | 60 | 24 | 150 | |||
5 | 1 | 31 | 180 | 390 | 360 | 120 | 1082 | ||
6 | 1 | 63 | 602 | 2100 | 3360 | 2520 | 720 | 9366 | |
7 | 1 | 127 | 1932 | 10,206 | 25,200 | 31,920 | 20,160 | 5040 | 94,586 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapatra, R.K.; Hong, T.-P. On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences. Mathematics 2022, 10, 1161. https://doi.org/10.3390/math10071161
Mohapatra RK, Hong T-P. On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences. Mathematics. 2022; 10(7):1161. https://doi.org/10.3390/math10071161
Chicago/Turabian StyleMohapatra, Rajesh Kumar, and Tzung-Pei Hong. 2022. "On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences" Mathematics 10, no. 7: 1161. https://doi.org/10.3390/math10071161
APA StyleMohapatra, R. K., & Hong, T. -P. (2022). On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences. Mathematics, 10(7), 1161. https://doi.org/10.3390/math10071161