What Is Authentic Maple Water? A Twelve-Month Shelf-Life Study of the Chemical Composition of Maple Water and Its Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Maple Water
2.3. Physiochemical Properties of Maple Water
2.4. Sugar Contents of Maple Water by HPLC-Refractive Index (RI)
2.5. Measurement of the Amino Acid Content of Maple Water by HPLC-Fluorescence (FL)
2.6. Organic Acid Content of Sap Samples by HPLC-DAD
2.7. Mineral Content of Maple Water by ICP-MS
2.8. Preparation of Maple Extracts
2.9. Total Polyphenol Content by Folin-Ciocalteau Method
2.10. LC-MS/MS Analysis and Molecular Networking
2.11. Antioxidant Activity by Free Radicals (DPPH) Scavenging Assay
2.12. Tyrosinase Inhibition
2.13. Anti-Inflammatory Assays (Soluble Epoxide Hydrolase and Cyclooxygenase-2 Inhibition Assays)
2.14. Statistical Analysis
3. Results
3.1. Maple Water’s Total Phenolic Content, °Bx, and pH Maintained for 12 Months
3.2. Sugar Contents of Maple Water Slightly Decreased over a 12-Month Shelf-Life
3.3. Other Chemical Contents of Maple Water Maintained over a 12-Month Shelf-Life
3.4. Maple Food Extracts (MSX and MWX) Had Comparable Phenolic Content
3.5. LC-MS/MS Analysis of Maple Food Extracts
3.6. Maple Food Extracts Showed Promising Antioxidant Activity
3.7. Maple Food Extracts Exerted Moderate Anti-Inflammatory Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perkins, T.D.; van den Berg, A.K. Chapter 4 Maple Syrup—Production, Composition, Chemistry, and Sensory Characteristics. Adv. Food Nutr. Res. 2009, 56, 101–143. [Google Scholar] [CrossRef] [PubMed]
- Aldret, R.L.; McDermott, M.; Aldret, S.; Davis, G.; Bellar, D. The Acute Effects of a Maple Water Drink on Exercise Responses, Oxidative Stress and Inflammation in Overweight College Males. J. Food Nutr. Res. 2022, 10, 593–599. [Google Scholar] [CrossRef]
- Dupuy, O.; Tremblay, J. Impact of Carbohydrate Ingestion on Cognitive Flexibility and Cerebral Oxygenation during High-Intensity Intermittent Exercise: A Comparison between Maple Products and Usual Carbohydrate Solutions. Nutrients 2019, 11, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, A.; Dudar, M.; Kauzlaric, J.; Frederick, K.A.; Fitzpatrick, S.; Ives, S.J. Rehydrating efficacy of maple water after exercise-induced dehydration. J. Int. Soc. Sports Nutr. 2019, 16, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavoie, L.; Tremblay, J. Ingestion of maple-based and other carbohydrate sports drinks: Effect on sensory perceptions during prolonged exercise. J. Int. Soc. Sports Nutr. 2020, 17, 63. [Google Scholar] [CrossRef]
- Li, L.; Seeram, N.P. Quebecol, a novel phenolic compound isolated from Canadian maple syrup. J. Funct. Foods 2011, 3, 125–128. [Google Scholar] [CrossRef]
- Li, L.; Seeram, N.P. Maple Syrup Phytochemicals Include Lignans, Coumarins, a Stilbene, and Other Previously Unreported Antioxidant Phenolic Compounds. J. Agric. Food Chem. 2010, 58, 11673–11679. [Google Scholar] [CrossRef]
- Li, L.; Seeram, N.P. Further Investigation into Maple Syrup Yields 3 New Lignans, a New Phenylpropanoid, and 26 Other Phytochemicals. J. Agric. Food Chem. 2011, 59, 7708–7716. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, T.; Li, L.; Nahar, P.; Slitt, A.; Seeram, N.P. Chemical Compositional, Biological, and Safety Studies of a Novel Maple Syrup Derived Extract for Nutraceutical Applications. J. Agric. Food Chem. 2014, 62, 6687–6698. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Li, L.; Zhang, Y.; Seeram, N.P. Pasteurized and sterilized maple sap as functional beverages: Chemical composition and antioxidant activities. J. Funct. Foods 2013, 5, 1582–1590. [Google Scholar] [CrossRef]
- Liu, Y.; Rose, K.N.; DaSilva, N.A.; Johnson, S.L.; Seeram, N.P. Isolation, Identification, and Biological Evaluation of Phenolic Compounds from a Traditional North American Confectionery, Maple Sugar. J. Agric. Food Chem. 2017, 65, 4289–4295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, H.; Seeram, N.P. Development and UFLC-MS/MS Characterization of a Product-Specific Standard for Phenolic Quantification of Maple-Derived Foods. J. Agric. Food Chem. 2016, 64, 3311–3317. [Google Scholar] [CrossRef] [Green Version]
- Ball, D.W. The Chemical Composition of Maple Syrup. J. Chem. Educ. 2007, 84, 1647–1650. [Google Scholar] [CrossRef]
- Mohammed, F.; Sibley, P.; Guillaume, D.; Abdulwali, N. Chemical composition and mineralogical residence of maple syrup: A comprehensive review. Food Chem. 2021, 374, 131817. [Google Scholar] [CrossRef] [PubMed]
- Abou-Zaid, M.M.; Nozzolillo, C.; Tonon, A.; Coppens, M.; Lombardo, D.A. High-Performance Liquid Chromatography Characterization and Identification of Antioxidant Polyphenols in Maple Syrup. Pharm. Biol. 2008, 46, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Gad, H.A.; Farag, M.A. Chemistry, processing, and functionality of maple food products: An updated comprehensive review. J. Food Biochem. 2021, 45, e13832. [Google Scholar] [CrossRef]
- Maple Syrup: Markets & Growth Opportunities. Available online: https://agriculture.vermont.gov/form/maple-syrup-markets-growth-opportunities (accessed on 3 May 2020).
- Larochelle, F.; Forget, É.; Rainville, A.; Bousquet, J. Sources of temporal variation in sap sugar content in a mature sugar maple (Acer saccharum) plantation. For. Ecol. Manag. 1998, 106, 307–313. [Google Scholar] [CrossRef]
- Garcia, E.J.; McDowell, T.; Ketola, C.; Jennings, M.; Miller, J.D.; Renaud, J.B. Metabolomics reveals chemical changes in Acer saccharum sap over a maple syrup production season. PLoS ONE 2020, 15, e0235787. [Google Scholar] [CrossRef]
- Lagacé, L.; Leclerc, S.; Charron, C.; Sadiki, M. Biochemical composition of maple sap and relationships among constituents. J. Food Compos. Anal. 2015, 41, 129–136. [Google Scholar] [CrossRef]
- McCormick, L.H. Variation in mineral content of red maple sap across an atmospheric deposition gradient. Commun. Soil Sci. Plant Anal. 1997, 28, 365–379. [Google Scholar] [CrossRef]
- Mellado-Mojica, E.; López, M.G. Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem. 2015, 167, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleixandre, M.; Santos, J.P.; Sayago, I.; Cabellos, J.M.; Arroyo, T.; Horrillo, M.C. A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties. Sensors 2015, 15, 8429–8443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, R.D.; He, H.; Wahome, P.G.; Wu, S.; Carter, G.T.; Bertin, M.J. New Micropeptins with Anti-Neuroinflammatory Activity Isolated from a Cyanobacterial Bloom. ACS Omega 2021, 6, 15472–15478. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Liu, W.; Frost, L.; Kirschenbaum, L.; Dain, J.A.; Seeram, N.P. Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct. 2016, 7, 2213–2222. [Google Scholar] [CrossRef]
- Li, H.; DaSilva, N.A.; Liu, W.; Xu, J.; Dombi, G.W.; Dain, J.A.; Li, D.; Chamcheu, J.C.; Seeram, N.P.; Ma, H. Thymocid®, a Standardized Black Cumin (Nigella sativa) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. Nutrients 2020, 12, 2146. [Google Scholar] [CrossRef]
- Ma, H.; Xu, J.; DaSilva, N.A.; Wang, L.; Wei, Z.; Guo, L.; Johnson, S.L.; Lu, W.; Xu, J.; Gu, Q.; et al. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: Inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells. Arch. Dermatol. Res. 2017, 309, 265–274. [Google Scholar] [CrossRef]
- Robinson, R.A.; Maclean, K.S.; Macconnell, H.M. Heavy Metal, pH, and Total Solid Content of Maple Sap and Syrup Produced in Eastern Canada. J. AOAC Int. 1989, 72, 674–676. [Google Scholar] [CrossRef]
- Kannangara, A.C.; Chandrajith, V.; Ranaweera, K. Comparative Analysis of Coconut Water in Four Different Maturity Stages. J. Pharmacogn. Phytochem. 2018, 7, 1814–1817. [Google Scholar]
- Guo, B.; Chen, B.; Liu, A.; Zhu, W.; Yao, S. Liquid Chromatography-Mass Spectrometric Multiple Reaction Monitoring-based Strategies for Expanding Targeted Profiling towards Quantitative Metabolomics. Curr. Drug Metab. 2012, 13, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Beretov, J.; Wasinger, V.C.; Graham, P.H.; Millar, E.K.; Kearsley, J.H.; Li, Y. Proteomics for Breast Cancer Urine Biomarkers. Adv. Clin. Chem. 2013, 63, 123–167. [Google Scholar] [CrossRef]
- Ma, H.; DaSilva, N.; Liu, W.; Nahar, P.P.; Wei, Z.; Liu, Y.; Pham, P.T.; Crews, R.; Vattem, D.A.; Slitt, A.L.; et al. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans. Neurochem. Res. 2016, 41, 2836–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, K.N.; Barlock, B.J.; DaSilva, N.A.; Johnson, S.L.; Liu, C.; Ma, H.; Nelson, R.; Akhlaghi, F.; Seeram, N.P. Anti-neuroinflammatory effects of a food-grade phenolic-enriched maple syrup extract in a mouse model of Alzheimer’s disease. Nutr. Neurosci. 2019, 24, 710–719. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, C.; Petrovas, S.; Wan, Y.; Chen, H.; Seeram, N.P.; Ma, H. Phenolic-enriched maple syrup extract protects human keratinocytes against hydrogen peroxide and methylglyoxal induced cytotoxicity. Dermatol. Ther. 2020, 33, e13426. [Google Scholar] [CrossRef] [PubMed]
- Nahar, P.P.; Driscoll, M.V.; Li, L.; Slitt, A.L.; Seeram, N.P. Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. J. Funct. Foods 2014, 6, 126–136. [Google Scholar] [CrossRef]
- Liu, W.; Wei, Z.; Ma, H.; Cai, A.; Liu, Y.; Sun, J.; DaSilva, N.A.; Johnson, S.L.; Kirschenbaum, L.J.; Cho, B.P.; et al. Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells. Food Funct. 2017, 8, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Apostolidis, E.; Li, L.; Lee, C.; Seeram, N.P. In vitro evaluation of phenolic-enriched maple syrup extracts for inhibition of carbohydrate hydrolyzing enzymes relevant to type 2 diabetes management. J. Funct. Foods 2011, 3, 100–106. [Google Scholar] [CrossRef]
- Toyoda, T.; Kamei, A.; Ishijima, T.; Abe, K.; Okada, S. A maple syrup extract alters lipid metabolism in obese type 2 diabetic model mice. Nutr. Metab. 2019, 16, 84. [Google Scholar] [CrossRef]
- Kamei, A.; Watanabe, Y.; Shinozaki, F.; Yasuoka, A.; Shimada, K.; Kondo, K.; Ishijima, T.; Toyoda, T.; Arai, S.; Kondo, T.; et al. Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet. Mol. Nutr. Food Res. 2016, 61, 1600477. [Google Scholar] [CrossRef]
- Kamei, A.; Watanabe, Y.; Shinozaki, F.; Yasuoka, A.; Kondo, T.; Ishijima, T.; Toyoda, T.; Arai, S.; Abe, K. Administration of a maple syrup extract to mitigate their hepatic inflammation induced by a high-fat diet: A transcriptome analysis. Biosci. Biotechnol. Biochem. 2015, 79, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Phenolic Content (%) | Average (%) | ||
---|---|---|---|---|
MSX | 40.31 | 40.30 | 40.43 | 40.35 |
MWX | 32.38 | 31.89 | 31.76 | 32.01 |
Compound | Presence | Exact Mass | Spectrum m/z | Error (ppm) | Adduct | Cosine Score | Shared Peaks | Molecule Class | Identification Source |
---|---|---|---|---|---|---|---|---|---|
1,2-amino-1,9-dimethyl-6,9-dihydro-1H-purin-6-one | MSX, MWX | 179.08 | 202.08 | <1 | [M+Na]+ | 0.91 | 5 | Imidazopyrimidines | GNPS |
Monolaurin * | MSX, MWX | 274.21 | 240.21 | 1.004 | [M+H]+-H2O | 0.86 | 8 | Glycerolipids | GNPS |
Adipic acid * | MSX, MWX | 146.06 | 165.02 | <1 | [M+Na]+ | 0.83 | 5 | Fatty acyls | GNPS |
Decanedioic acid, bis(2-ethylhexyl) ester | MSX, MWX | 426.67 | 427.43 | <1 | [M+H]+ | 0.65 | 4 | Fatty acyls | GNPS |
Syringaldehyde * | MSX, MWX | 182.17 | 182.94 | <1 | [M+H]+ | - | - | Hydroxybenzaldehyde | [9,10] |
Phellopterin derivative * | MSX, MWX | 300.10 | 337.34 | 14 | [M+Na]+ | 0.64 | 6 | Coumarins and derivatives | GNPS |
Dehydrodiconiferyl alcohol * | MSX, MWX | 358.40 | 359.18 | <1 | [M+H]+ | - | - | Lignans | [9,10] |
(-) Catechin | MSX | 290.08 | 313.01 | <1 | [M+Na]+ | 0.62 | 4 | Flavonoids | GNPS; [14,15] |
Sample | % Inhibition (100 µg/mL) | |
---|---|---|
sEH | COX-2 | |
MSX | 91.53 ± 7.4% | 10.97 ± 2.5% |
MWX | 6.27 ± 7.1% | 21.87 ± 9.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrey, K.J.; Liu, Y.; Li, H.; Ma, H.; Via, C.W.; Bertin, M.J.; Seeram, N.P. What Is Authentic Maple Water? A Twelve-Month Shelf-Life Study of the Chemical Composition of Maple Water and Its Biological Activities. Foods 2023, 12, 239. https://doi.org/10.3390/foods12020239
Torrey KJ, Liu Y, Li H, Ma H, Via CW, Bertin MJ, Seeram NP. What Is Authentic Maple Water? A Twelve-Month Shelf-Life Study of the Chemical Composition of Maple Water and Its Biological Activities. Foods. 2023; 12(2):239. https://doi.org/10.3390/foods12020239
Chicago/Turabian StyleTorrey, Kara J., Yongqiang Liu, Huifang Li, Hang Ma, Christopher W. Via, Matthew J. Bertin, and Navindra P. Seeram. 2023. "What Is Authentic Maple Water? A Twelve-Month Shelf-Life Study of the Chemical Composition of Maple Water and Its Biological Activities" Foods 12, no. 2: 239. https://doi.org/10.3390/foods12020239
APA StyleTorrey, K. J., Liu, Y., Li, H., Ma, H., Via, C. W., Bertin, M. J., & Seeram, N. P. (2023). What Is Authentic Maple Water? A Twelve-Month Shelf-Life Study of the Chemical Composition of Maple Water and Its Biological Activities. Foods, 12(2), 239. https://doi.org/10.3390/foods12020239