Filomat 2015 Volume 29, Issue 10, Pages: 2207-2215
https://doi.org/10.2298/FIL1510207M
Full text ( 245 KB)
Cited by
The Kurepa-Vandermonde matrices arising from Kurepaâs left factorial hypothesis
MeÅ¡troviÄ Romeo (University of Montenegro, Maritime Faculty, Dobrota, Kotor, Montenegro)
Kurepaâs (left factorial) hypothesis asserts that for each integer n ⥠2 the
greatest common divisor of !n := Pn-1âk=0 k! and n! is 2. It is known that
Kurepaâs hypothesis is equivalent to p-1âk=0 (-1)k/k!â¡/ 0 (mod p) for each
odd prime p, or equivalently, Sp-1 â¡/ 0(modp) (i.e., Bp-1 â¡/1(modp)) for
each odd prime p, where Sp-1 and Bp-1 are the (p-1)th derangement
number and the (p-1)th Bell number, respectively. Motivated by these two
reformulations of Kurepaâs hypothesis and a congruence involving the Bell
numbers and the derangement numbers established by Z.-W. Sun and D. Zagier
[28, Theorem 1.1], here we give two âmatrixâ formulations of Kurepaâs
hypothesis over the field Fp, where p is any odd prime. The matrices Vp and
Cp which are involved in these âmatrixâ formulations of Kurepaâs hypothesis
are the square (p-1)x(p-1) Vandermondelike matrices. Accordingly, Vp and
Cp are called the Kurepa-Vandermonde matrices. Furthermore, for each odd
prime p we determine det(Vp) and det(Cp) in the field Fp.
Keywords: Left factorial function, Kurepaâs hypothesis, derangement number, reformulation of Kurepaâs hypothesis, Bell number, Kurepaâs determinant, congruence modulo a prime, Kurepa-Vandermonde matrix, Kurepa-Vandermonde determinant