Semigroup congruences : computational techniques and theoretical applications
Abstract
Computational semigroup theory is an area of research that is subject to growing interest. The development of semigroup algorithms allows for new theoretical results to be discovered, which in turn informs the creation of yet more algorithms. Groups have benefitted from this cycle since before the invention of electronic computers, and the popularity of computational group theory has resulted in a rich and detailed literature. Computational semigroup theory is a less developed field, but recent work has resulted in a variety of algorithms, and some important pieces of software such as the Semigroups package for GAP.
Congruences are an important part of semigroup theory. A semigroup’s congruences determine its homomorphic images in a manner analogous to a group’s normal subgroups. Prior to the work described here, there existed few practical algorithms for computing with semigroup congruences. However, a number of results about alternative representations for congruences, as well as existing algorithms that can be borrowed from group theory, make congruences a fertile area for improvement. In this thesis, we first consider computational techniques that can be applied to the study of congruences, and then present some results that have been produced or precipitated by applying these techniques to interesting examples.
After some preliminary theory, we present a new parallel approach to computing with congruences specified by generating pairs. We then consider alternative ways of representing a congruence, using intermediate objects such as linked triples. We also present an algorithm for computing the entire congruence lattice of a finite semigroup. In the second part of the thesis, we classify the congruences of several monoids of bipartitions, as well as the principal factors of several monoids of partial transformations. Finally, we consider how many congruences a finite semigroup can have, and examine those on semigroups with up to seven elements.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.
-
Generation and presentations of semigroup constructions : Bruck-Reilly extensions and P-semigroups
Carvalho, Catarina A. S. (University of St Andrews, 2006) - ThesisIn this thesis we study problems regarding finite presentability of Bruck-Reilly extensions, finite generation of the underlying monoids, and finite generation of P-unitary inverse semigroups. The first main question we ... -
Minimum degrees of finite rectangular bands, null semigroups, and variants of full transformation semigroups
Cameron, Peter J.; East, James; FtzGerald, Des; Mitchell, James David; Pebody, Luke; Quinn-Gregson, Thomas (2023-12-22) - Journal articleFor a positive integer n, the full transformation semigroup Tn consists of all self maps of the set {1,…,n} under composition. Any finite semigroup S embeds in some Tn, and the least such n is called the (minimum transformation) ... -
On generators, relations and D-simplicity of direct products, Byleen extensions, and other semigroup constructions
Baynes, Samuel (University of St Andrews, 2015-11-30) - ThesisIn this thesis we study two different topics, both in the context of semigroup constructions. The first is the investigation of an embedding problem, specifically the problem of whether it is possible to embed any given ...