Some problems of Erdős on the sum-of-divisors function
HTML articles powered by AMS MathViewer
- by Paul Pollack and Carl Pomerance;
- Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26
- DOI: https://doi.org/10.1090/btran/10
- Published electronically: April 5, 2016
- HTML | PDF
Abstract:
Let $\sigma (n)$ denote the sum of all of the positive divisors of $n$, and let $s(n) = \sigma (n)-n$ denote the sum of the proper divisors of $n$. The functions $\sigma (\cdot )$ and $s(\cdot )$ were favorite subjects of investigation by the late Paul Erdős. Here we revisit three themes from Erdős’s work on these functions. First, we improve the upper and lower bounds for the counting function of numbers $n$ with $n$ deficient but $s(n)$ abundant, or vice versa. Second, we describe a heuristic argument suggesting the precise asymptotic density of $n$ not in the range of the function $s(\cdot )$; these are the so-called nonaliquot numbers. Finally, we prove new results on the distribution of friendly $k$-sets, where a friendly $k$-set is a collection of $k$ distinct integers which share the same value of $\frac {\sigma (n)}{n}$.References
- J. D. Alanen, Empirical study of aliquot sequences, Ph.D. thesis, Yale University, 1972.
- Aria Anavi, Paul Pollack, and Carl Pomerance, On congruences of the form $\sigma (n)\equiv a\pmod n$, Int. J. Number Theory 9 (2013), no. 1, 115–124. MR 2997493, DOI 10.1142/S1793042112501266
- Michael R. Avidon, On the distribution of primitive abundant numbers, Acta Arith. 77 (1996), no. 2, 195–205. MR 1411032, DOI 10.4064/aa-77-2-195-205
- R. C. Baker and G. Harman, Shifted primes without large prime factors, Acta Arith. 83 (1998), no. 4, 331–361. MR 1610553, DOI 10.4064/aa-83-4-331-361
- William D. Banks and Florian Luca, Nonaliquots and Robbins numbers, Colloq. Math. 103 (2005), no. 1, 27–32. MR 2148946, DOI 10.4064/cm103-1-4
- W. Bosma, Aliquot sequences with small starting values, preprint available from http://www.math.ru.nl/~bosma/.
- Wieb Bosma and Ben Kane, The aliquot constant, Q. J. Math. 63 (2012), no. 2, 309–323. MR 2925292, DOI 10.1093/qmath/haq050
- E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France 16 (1888), 128–129 (French). MR 1504036, DOI 10.24033/bsmf.366
- Yong-Gao Chen and Qing-Qing Zhao, Nonaliquot numbers, Publ. Math. Debrecen 78 (2011), no. 2, 439–442. MR 2796778, DOI 10.5486/PMD.2011.4820
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50–60. MR 46375
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free prime factors $>y$. II, Indag. Math. 28 (1966), 239–247. Nederl. Akad. Wetensch. Proc. Ser. A 69. MR 205945, DOI 10.1016/S1385-7258(66)50029-4
- L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Q. J. Math. 44 (1913), 264–296.
- P. Erdős, On primitive abundant numbers, J. London Math. Soc. 10 (1935), 49–58.
- P. Erdős, On the normal number of prime factors of $p-1$ and some related problems concerning Euler’s $\varphi$-function, Q. J. Math., Oxford Ser. 6 (1935), 205–213.
- P. Erdös, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111. MR 69198, DOI 10.5486/pmd.1955.4.1-2.16
- P. Erdös, On perfect and multiply perfect numbers, Ann. Mat. Pura Appl. (4) 42 (1956), 253–258. MR 82516, DOI 10.1007/BF02411879
- P. Erdős, Remarks on number theory. II. Some problems on the $\sigma$ function, Acta Arith. 5 (1959), 171–177. MR 107623, DOI 10.4064/aa-5-2-171-177
- P. Erdős, Über die Zahlen der Form $\sigma (n)-n$ und $n-\varphi (n)$, Elem. Math. 28 (1973), 83–86.
- P. Erdős, On the distribution of numbers of the form $\sigma (n)/n$ and on some related questions, Pacific J. Math. 52 (1974), 59–65. MR 354601, DOI 10.2140/pjm.1974.52.59
- P. Erdős, On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976), no. 135, 641–645. MR 404115, DOI 10.1090/S0025-5718-1976-0404115-8
- P. Erdős and G. J. Rieger, Ein Nachtrag über befreundete Zahlen, J. Reine Angew. Math. 273 (1975), 220 (German). MR 364157
- P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory (Allerton Park, IL, 1989) Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 165–204. MR 1084181, DOI 10.1007/978-1-4612-3464-7_{1}3
- Paul Erdős, Florian Luca, and Carl Pomerance, On the proportion of numbers coprime to a given integer, Anatomy of integers, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008, pp. 47–64. MR 2437964, DOI 10.1090/crmp/046/03
- Kevin Ford, Florian Luca, and Carl Pomerance, Common values of the arithmetic functions $\phi$ and $\sigma$, Bull. Lond. Math. Soc. 42 (2010), no. 3, 478–488. MR 2651943, DOI 10.1112/blms/bdq014
- Richard K. Guy and J. L. Selfridge, What drives an aliquot sequence?, Math. Comput. 29 (1975), 101–107. MR 384669, DOI 10.1090/S0025-5718-1975-0384669-X
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 424730
- Bernhard Hornfeck and Eduard Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann. 133 (1957), 431–438 (German). MR 90600, DOI 10.1007/BF01343756
- Mitsuo Kobayashi, Paul Pollack, and Carl Pomerance, On the distribution of sociable numbers, J. Number Theory 129 (2009), no. 8, 1990–2009. MR 2522719, DOI 10.1016/j.jnt.2008.10.011
- H. W. Lenstra, Jr., Problem 6064, Amer. Math. Monthly 82 (1975), 1016. Solution by the proposer, op. cit. 84 (1977), 580.
- Florian Luca and Carl Pomerance, The range of the sum-of-proper-divisors function, Acta Arith. 168 (2015), no. 2, 187–199. MR 3339454, DOI 10.4064/aa168-2-6
- Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4\cdot 10^{18}$, Math. Comp. 83 (2014), no. 288, 2033–2060. MR 3194140, DOI 10.1090/S0025-5718-2013-02787-1
- Paul Pollack, On the greatest common divisor of a number and its sum of divisors, Michigan Math. J. 60 (2011), no. 1, 199–214. MR 2785871, DOI 10.1307/mmj/1301586311
- Paul Pollack, Some arithmetic properties of the sum of proper divisors and the sum of prime divisors, Illinois J. Math. 58 (2014), no. 1, 125–147. MR 3331844
- Paul Pollack, Remarks on fibers of the sum-of-divisors function, in Analytic number theory (in honor of Helmut Maier’s 60th birthday), M. Rassias and C. Pomerance, eds., Springer, Cham, Switzerland, 2015, pp. 305–320.
- Paul Pollack and Carl Pomerance, Prime-perfect numbers, Integers 12 (2012), no. 6, 1417–1437. MR 3011565, DOI 10.1515/integers-2012-0044
- Carl Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293(294) (1977), 217–222. MR 447087, DOI 10.1515/crll.1977.293-294.217
- Carl Pomerance, Popular values of Euler’s function, Mathematika 27 (1980), no. 1, 84–89. MR 581999, DOI 10.1112/S0025579300009967
- Carl Pomerance, On amicable numbers, in Analytic number theory (in honor of Helmut Maier’s 60th birthday), M. Rassias and C. Pomerance, eds., Springer, Cham, Switzerland, 2015, pp. 321–327.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp. 83 (2014), no. 288, 1903–1913. MR 3194134, DOI 10.1090/S0025-5718-2013-02775-5
- G. J. Rieger, Bemerkung zu einem Ergebnis von Erdős über befreundete Zahlen, J. Reine Angew. Math. 261 (1973), 157–163 (German). MR 319882, DOI 10.1515/crll.1973.261.157
- J. Sesiano, Two problems of number theory in Islamic times, Arch. Hist. Exact Sci. 41 (1991), no. 3, 235–238. MR 1107382, DOI 10.1007/BF00348408
- N. J. A. Sloane, On-line encyclopedia of integer sequences, http://oeis.org. Sequence A001970; gp script by Michael Marcus online at http://oeis.org/A246827/ a246827.gp.txt.
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas. MR 1342300
- H. J. J. te Riele, A theoretical and computational study of generalized aliquot sequences, Mathematical Centre Tracts, No. 74, Mathematisch Centrum, Amsterdam, 1976. MR 556033
- Vincent Toulmonde, Module de continuité de la fonction de répartition de $\phi (n)/n$, Acta Arith. 121 (2006), no. 4, 367–402 (French). MR 2224402, DOI 10.4064/aa121-4-6
- R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997. MR 1435742, DOI 10.1017/CBO9780511470929
- Eduard Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959), 316–318 (German). MR 104636, DOI 10.1007/BF01360967
Bibliographic Information
- Paul Pollack
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 830585
- Email: [email protected]
- Carl Pomerance
- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- MR Author ID: 140915
- Email: [email protected]
- Received by editor(s): February 9, 2015
- Received by editor(s) in revised form: January 4, 2016
- Published electronically: April 5, 2016
- Additional Notes: The research of the first named author was supported in part by NSF grant DMS-1402268.
- © Copyright 2016 by the authors under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26
- MSC (2010): Primary 11N37; Secondary 11N64
- DOI: https://doi.org/10.1090/btran/10
- MathSciNet review: 3481968
Dedicated: For Richard Guy on his 99th birthday. May his sequence be unbounded.