Variant of a theorem of Erdős on the sum-of-proper-divisors function
HTML articles powered by AMS MathViewer
- by Carl Pomerance and Hee-Sung Yang;
- Math. Comp. 83 (2014), 1903-1913
- DOI: https://doi.org/10.1090/S0025-5718-2013-02775-5
- Published electronically: October 29, 2013
- PDF | Request permission
Abstract:
In 1973, Erdős proved that a positive proportion of numbers are not of the form $\sigma (n)-n$, the sum of the proper divisors of $n$. We prove the analogous result where $\sigma$ is replaced with the sum-of-unitary-divisors function $\sigma ^*$ (which sums divisors $d$ of $n$ such that $(d, n/d) = 1$), thus solving a problem of te Riele from 1976. We also describe a fast algorithm for enumerating numbers not in the form $\sigma (n)-n$, $\sigma ^*(n)-n$, and $n-\varphi (n)$, where $\varphi$ is Euler’s function.References
- Jack David Alanen, EMPIRICAL STUDY OF ALIQUOT SERIES, ProQuest LLC, Ann Arbor, MI, 1972. Thesis (Ph.D.)–Yale University. MR 2622250
- J. Browkin and A. Schinzel, On integers not of the form $n-\phi (n)$, Colloq. Math. 68 (1995), no. 1, 55–58. MR 1311762, DOI 10.4064/cm-68-1-55-58
- Yong-Gao Chen and Xue-Gong Sun, On Romanoff’s constant, J. Number Theory 106 (2004), no. 2, 275–284. MR 2059075, DOI 10.1016/j.jnt.2003.11.009
- Yong-Gao Chen and Qing-Qing Zhao, Nonaliquot numbers, Publ. Math. Debrecen 78 (2011), no. 2, 439–442. MR 2796778, DOI 10.5486/PMD.2011.4820
- A. de Polignac, Six propositions arithmologiques déduites du crible de d’Èratosthéne, Nouv. Ann. Math. 8 (1849), 423–429.
- P. Erdős, On the normal number of prime factors of $p-1$ and some related problems concerning Euler’s $\varphi$-function, Quart. J. Math. 6 (1935), 205–213.
- P. Erdös, On integers of the form $2^k+p$ and some related problems, Summa Brasil. Math. 2 (1950), 113–123. MR 44558
- P. Erdös, Über die Zahlen der Form $\sigma (n)-n$ und $n-\varphi (n)$, Elem. Math. 11 (1973), 83–86.
- A. Flammenkamp and F. Luca, Infinite families of noncototients, Colloq. Math. 86 (2000), no. 1, 37–41. MR 1799887, DOI 10.4064/cm-86-1-37-41
- Kevin Ford, The distribution of totients, Ramanujan J. 2 (1998), no. 1-2, 67–151. Paul Erdős (1913–1996). MR 1642874, DOI 10.1023/A:1009761909132
- Aleksander Grytczuk and Barbara Mędryk, On a result of Flammenkamp-Luca concerning noncototient sequence, Tsukuba J. Math. 29 (2005), no. 2, 533–538. MR 2177025, DOI 10.21099/tkbjm/1496164969
- Laurent Habsieger and Xavier-François Roblot, On integers of the form $p+2^k$, Acta Arith. 122 (2006), no. 1, 45–50. MR 2217322, DOI 10.4064/aa122-1-4
- Guangshi Lü, On Romanoff’s constant and its generalized problem, Adv. Math. (China) 36 (2007), no. 1, 94–100 (English, with English and Chinese summaries). MR 2344675
- D. Moews and P. C. Moews, A search for aliquot cycles and amicable pairs, Acta Arith. 122 (2006), 45–50.
- H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975), 353–370. MR 374063, DOI 10.4064/aa-27-1-353-370
- T. Oliveira e Silva, Goldbach conjecture verification, last updated April 2012, accessed 5 June 2012. http://www.ieeta.pt/~tos/goldbach.html.
- J. Pintz, A note on Romanov’s constant, Acta Math. Hungar. 112 (2006), no. 1-2, 1–14. MR 2251126, DOI 10.1007/s10474-006-0060-6
- N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109 (1934), no. 1, 668–678 (German). MR 1512916, DOI 10.1007/BF01449161
- E. J. Scourfield, Non-divisibility of some multiplicative functions, Acta Arith. 22 (1972/73), 287–314. MR 316407, DOI 10.4064/aa-22-3-287-314
- H. J. J. te Riele, A theoretical and computational study of generalized aliquot sequences, Mathematical Centre Tracts, No. 74, Mathematisch Centrum, Amsterdam, 1976. MR 556033
- J. G. van der Corput, On de Polignac’s conjecture, Simon Stevin 27 (1950), 99–105 (Dutch). MR 35298
Bibliographic Information
- Carl Pomerance
- Affiliation: Department of Mathematics, 6188 Kemeny Hall, Dartmouth College, Hanover, New Hampshire 03755
- MR Author ID: 140915
- Email: [email protected]
- Hee-Sung Yang
- Affiliation: Department of Mathematics, 6188 Kemeny Hall, Dartmouth College, Hanover, New Hampshire 03755
- Email: [email protected]
- Received by editor(s): June 14, 2012
- Received by editor(s) in revised form: July 31, 2012, and December 10, 2012
- Published electronically: October 29, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 1903-1913
- MSC (2010): Primary 11A25, 11Y70, 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-2013-02775-5
- MathSciNet review: 3194134