1253203973 さん
(1)
棒に働いている力は、
重力:mg = 10 [N] (棒の中心に、鉛直下向き)
壁の力:f [N] (棒の左端に、鉛直上向き)
加える力:F [N] (棒の右端に、鉛直上向き)
の3力であり、これらがつり合っています。
力のつり合いの式は、
F + f = mg … ①
棒の左端まわりの、力のモーメントのつり合いの式は、
F・5.0 -mg・5.0/2 = 0 … ②
②より、
5.0F = 10×5.0 /2 = 25
∴ F = 25/5.0 = 5.0 [N]
(2)
もう一つ加える力を上向きにfとすると、
棒に働いている力のつり合いの式は、
10 + 10 +f = 20 + 5
∴ f= 20+5-10-10 = 5 [N]
(3)
棒の左端から x [cm] とすると、
棒の左端まわりの、力のモーメントのつり合いの式より、
10・5.0 + 10・25 +f・x -20・15 -5・30 = 0
50 +250 +5x = 300 +150
300 +5x = 450
5x = 150
∴ x = 150/5 = 30 [cm]
(4)
丸太の左端、右端を A, B とします。
i) 丸太の左端を持ち上げたとき、
丸太に働いている力は、
重力:W [N] (Aからx の位置に、鉛直下向き)
持ち上げる力:10 [N] (点Aに、鉛直上向き)
垂直抗力:Nb (点Bに、鉛直上向き)
の3力であり、これらがつり合っています。
力のつり合いの式は、
Nb + 10 = W … ①
点Bまわりの、力のモーメントのつり合いの式は、
W・(1.0-x) -10・1.0 = 0 … ②
ii) 丸太の右端を持ち上げたとき、
丸太に働いている力は、
重力:W [N] (Aからxの位置に、鉛直下向き)
持ち上げる力:30 [N] (点Bに、鉛直上向き)
垂直抗力:Na (点Aに、鉛直上向き)
の3力であり、これらがつり合っています。
力のつり合いの式は、
30 + Nb = W … ③
点Aまわりの、力のモーメントのつり合いの式は、
30・1.0 -W・x = 0 … ④
②より、
W(1.0-x) = 10 … ②'
④より、
Wx = 30 … ④'
②'÷④' より、
(1.0-x) /x = 10/30
3.0(1.0-x) = 1.0x
3.0 -3.0x = 1.0x
4.0x = 3.0
∴ x = 3.0/4.0 = 0.75 [m] = 75 [cm]
(5)
(4)の丸太の重さW は、④' より、
W = 30/x = 30/0.75 = 40 [N]
となります。