Vés al contingut

Distribució gamma

De la Viquipèdia, l'enciclopèdia lliure
Infotaula distribució de probabilitatDistribució Gamma
Funció de densitat de probabilitat
Probability density plots of gamma distributions
Funció de distribució de probabilitat
Cumulative distribution plots of gamma distributions
Tipusdistribution de Tweedie, família exponencial, generalized gamma distribution (en) Tradueix, distribució matriu gamma, distribució univariant i distribució de probabilitat contínua Modifica el valor a Wikidata
Paràmetres
  • forma
  • escala
Suport
fdp
FD
Esperança matemàtica
MedianaNo té expressió tancada
Moda
Variància
Coeficient de simetria
Curtosi
Entropia
FGM
FC
Informació de Fisher
MathworldGammaDistribution Modifica el valor a Wikidata

En la teoria de la probabilitat i l'estadística, la distribució gamma és una família de distribucions contínues amb dos paràmetres que inclouen com a casos particulars moltes distribucions importants, com la distribució exponencial, khi quadrat o Erlang. Té un paràmetre d'escala θ i un paràmetre de forma k. Si k és un nombre sencer aleshores la distribució representa la suma de k variables aleatòries exponencials, cadascuna de les quals té mitjana θ. La referència bàsica d'aquest article és Johnson et al.[1].

Funció de densitat i parametritzacions

[modifica]

Hi ha dues parametritzacions diferents de la distribució gamma. La primera[2] utilitza un paràmetre d'escala i un paràmetre de forma , i és àmpliament utilitzada tant en Estadística com en Probabilitats; a més, és la més habitual en el programari estadístic.[3] La funció de densitat és

on és la funció gamma. Si és una variable aleatòria amb aquesta distribució, s'escriu o .


La segona parametrització utilitza un paràmetre d'escala inversa, que també s'anomena paràmetre de taxa (rate parameter), , , i el paràmetre de forma . Aquesta parametrització també s'utilitza molt, per exemple en teoria de la probabilitat [4] o en Estadística bayesiana.[5] La funció de densitat, amb aquesta parametrització és


En aquest article utilitzarem la primera parametrització.

Funció de distribució

[modifica]

on és la funció gamma incompleta inferior.

Propietat d'escala

[modifica]

Sigui . Aleshores per qualsevol , tenim que . Aquesta propietat es comprova calculant la funció de densitat de .

En particular, si , aleshores i, recíprocament, si , aleshores ; Johnson et al[6] anomenen distribució gamma estàndard a la distribució .

En termes de les funcions de densitat tenim la relació que és una de les característiques dels paràmetres d'escala.

La propietat d'escala permet reduir diverses propietats (per exemple el càlcul dels moments) a casos més senzills.

Moments

[modifica]

La distribució gamma té moments de tots els ordres. Si , aleshores per a ,


En particular, d'on



Funció generatriu de moments i funció característica

[modifica]

La distribució gamma té funció generatriu de moments en una semirecta que conté el zero:



La funció característica és [4] on és la branca principal del logaritme, és a dir, amb la part imaginària a .

Caràcter reproductiu

[modifica]

Si i independents, aleshores ; és diu que la distribució és reproductiva[7] respecte el paràmetre . Aquesta propietat es demostra utilitzant les funcions característiques (o les funcions generatrius de moments) de i .


Més generalment, si són independents, , aleshores .

La distribució gamma és infinitament divisible

[modifica]

La distribució gamma és infinitament divisible (o infinitament descomposable),[8] això és, sigui , aleshores per a qualsevol enter , existeixen (en algun espai de probabilitat) variables aleatòries independents i idènticament distribuïdes tals que on indica la igualtat en distribució o llei. Aquí cal prendre .

La representació de Lévy-Khintchine[9] de la funció característica és Per tant, la mesura de Lévy té densitat i la part gaussiana i la deriva (drift) són zero (vegeu Sato [10] per a les definicions d'aquests termes).

Aproximació de la distribució gamma per la distribució normal

[modifica]

En aquest apartat suposarem que el paràmetre és un nombre natural. Sigui , aleshores, com conseqüència del teorema central de límit, (Vegeu les notacions a convergència de variables aleatòries.) En altres paraules, per a gran, és aproximadament normal .

Però aquesta aproximació a la distribució normal és molt lenta i el següent resultat dona una aproximació més ràpida: Sigui . Aleshores És a dir, per a gran, és aproximadament normal .[11]



Altres propietats

[modifica]

Família exponencial

[modifica]

La distribució gamma pertany a la família exponencial de dos paràmetres i té paràmetres naturals i , i estadístics naturals i .

Moda

[modifica]

Quan , la funció de densitat de la distribució té un únic màxim al punt ; és diu que aquest valor és la moda de la distribució i que la distribució és unimodal. El valor del màxim és , que per la fórmula de Stirling, per a valors grans de es pot aproximar per .[12]

Quan , aleshores la densitat no està afitada, ja que, en aquest cas,

Entropia

[modifica]

L'entropia ve donada per

on ψ(k) és la funció digamma.

Divergència Kullback-Leibler

[modifica]

La divergència Kullback-Leibler entre una Γ(α0, β0) (la distribució veritable) i una Γ(α, β) (la distribució que l'aproxima) ve donada per

Transformada de Laplace

[modifica]

La transformada de Laplace de la distribució gamma és:

Estimació dels paràmetres

[modifica]

Màxima versemblança

[modifica]

La funció de versemblança per a N observacions iid és

de la qual podem calcular la log-versemblança

L'estimador màxim-versemblant s'obté maximitzant la log-versemblança, és a dir, calculant-ne la derivada i igualant a zero (es pot demostrar que la funció és convexa i que per tant té un sol extrem). Procedint d'aquesta manera trobem que:

Substituint aquest resultat a l'expressió de la log-versemblança dona

Per trobar el màxim respecte de k cal calcular la derivada i igualar-la a zero, amb què s'obté:

on

és la funció digamma. No existeix cap fórmula tancada per a k, però la funció es comporta bé numèricament (és convex) i, per tant, és senzill trobar-ne una solució numèrica, per exemple amb el mètode de Newton. És possible trobar un valor inicial per a k emprant el mètode dels moments, o emprant l'aproximació

Si definim

aleshores k és aproximadament

que és dins d'un 1,5% del valor correcte.

Estimador Bayesià

[modifica]

Si considerem que k és conegut i és desconegut, la funció de densitat a posteriori per a és (assumint que la distribució a priori és proporcional a )

Definint

Per tal de calcular l'esperança cal calcular la integral respecte &theta, el qual pot dur-se a terme emprant un canvi de variables que revela que 1/&theta segueix una distribució gamma amb paràmetres .

Els moments podem calcular-se especificant diferents valors per a m a la següent expressió

Per exemple, l'esperança +/- la desviació estàndard de la distribució a posteriori de és:

+/-

També és possible obtenir estimadors Bayesians sense assumir que k és conegut, però en general no és possible obtenir-ne una expressió senzilla.

Generació de valors d'una distribució gamma

[modifica]

Tenint en compte la propietat d'escala esmentada anteriorment, és suficient generar una variable gamma amb β = 1 i després transformar-la a qualsevol altre valor de β amb una simple divisió.

Emprant el fet que una distribució Γ(1, 1) és el mateix que una distribució exponencial Exp(1), i tenint en compte el mètode per generar variables aleatòries exponencials, arribem a la conclusió que si U prové d'una distribució uniforme en (0, 1], aleshores -ln(U) segueix una Γ(1, 1). Emprant la propietat de què la suma de variables aleatòries gamma independents segueix novament una distribució gamma, extenem el resultat:

on Uk són uniformement distribuïdesen (0, 1] i independents.

Tanmateix aquesta estratègia només funciona si n és un nombre sencer. Ara veurem com generar observacions d'una Γ(δ, 1) per a 0 < δ < 1, ja que després podem aplicar la propietat de la suma per al cas 1 < &delta.

A continuació presenten un algoritme, sense demostració. Es tracta d'un cas particular del mètode d'acceptació-rebuig:

  1. Sigui m= 1.
  2. Generar i — independents i uniformement distribuïdes a (0, 1].
  3. Si , on , aleshores anar a 4, altrament anar a 5.
  4. Sigui . Anar a 6.
  5. Sigui .
  6. Si , aleshores incrementar m i tornar a 2.
  7. Assumim que és l'observació d'una

Per resumir,

on [k] és la part sencera de k, i ξ ha estat generat emprant l'algoritme que hem presentat δ = {k} (la part fraccional de k), Uk i Vl segueixen la distribució explicada anteriorment i són independents.

La Llibreria científica GNU disposa de rutines robustes per a generar observacions de moltes distribucions, incloent la distribució Gamma.

Distribucions relacionades

[modifica]

Casos particulars

[modifica]
  • Si , aleshores X segueix una distribució exponencial amb paràmetre λ.
  • Si , aleshores X és idènticament distribuïda a una χ²(ν), la distribució khi-quadrat amb ν graus de llibertat.
  • Si és un nombre sencer, la distribució gamma es denomina distribució d'Erlang que serveix per a modelar el temps d'arribada fins a la -ena "arribada" en un procés de Poisson d'una dimensió amb intensitat 1/θ.
  • Si , aleshores X segueix una distribució de Maxwell-Boltzmann amb paràmetre a.
  • , aleshores

Altres

[modifica]
  • Si X segueix una Γ(k, θ) aleshores 1/X segueix una distribució gamma inversa amb paràmetres k i θ-1.
  • Si X i Y són Γ(α, θ) i Γ(β, θ) independents, respectivament, aleshores X / (X + Y) segueix una distribució beta amb paràmetres α i β.
  • Si Xi són Γ(αi,θ) independents, aleshores el vector (X1 / S, ..., Xn / S), on S = X1 + ... + Xn, segueix una distribució de Dirichlet amb paràmetres α1, ..., αn.

Distribució gamma amb tres paràmetres

[modifica]

Johnson et al.[6] introdueixen la distribució gamma amb tres paràmetres: a més dels paràmetres de forma i escala , consideren un paràmetre de posició ; la distribució ve definida per la funció de densitat


Notes

[modifica]
  1. Johnson, Kotz i Balakrisnan, 1994, Chapter 17.
  2. Forbes, C; Evans, M.; Hastings, N.; Peacock, B. Statistical distributions.. 4th ed.. Oxford: Wiley-Blackwell, 2010, p. 109. ISBN 978-0-470-62724-2. 
  3. «The R project for statistical computing». [Consulta: 9 febrer 2023].
  4. 4,0 4,1 Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 13. ISBN 0-521-55302-4. 
  5. Bernardo, J. M.; Smith, A. F. M.. Bayesian theory. Chichester, Eng.: Wiley, 1994, p. 118. ISBN 0-471-92416-4. 
  6. 6,0 6,1 Johnson, Kotz i Balakrisnan, 1994, p. 337.
  7. Wilks, S. S.. Mathematical statistics. Nova York: Wiley, 1962, p. 176. ISBN 0-471-94644-3. 
  8. Loeve, Michel. Teoría de la probabilidad. Madrid: Tecnos, D.L. 1976, p. 289. ISBN 84-309-0663-0. 
  9. Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 45. ISBN 0-521-55302-4. 
  10. Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 37-39. ISBN 0-521-55302-4. 
  11. 11,0 11,1 Williams, D. Weighing the odds : a course in probability and statistics. Cambridge: Cambridge University Press, 2001, p. 164. ISBN 0-521-80356-X. 
  12. Feller, William. Introducción a ls probabilidades y sus aplicaciones, vol. 2. Mexico: Editorial Limua, 1978, p. 76. 

Bibliografia

[modifica]
  • Choi, S. C: and R. Wette, R. (1969) Maximum Likelihood Estimation of the Parameters of the Gamma Distribution and Their Bias, Technometrics, 11(4) 683-69

Enllaços externs

[modifica]