æ¬è¨äºã¯ãå½ç¤¾ãªã¦ã³ãã¡ãã£ã¢ãDoorsãã«ç§»è»¢ãã¾ããã
ç´5ç§å¾ã«èªåçã«ãªãã¤ã¬ã¯ããã¾ãã
ããã«ã¡ã¯ãA.I.éçºé¨ã®å¤ªç°ã§ãã
ä»åã¯éåã¢ãã¼ãªã³ã°ã®ç°¡åãªã·ãã¥ã¬ã¼ã¿ãä½ã£ã¦ã¿ãããå®éã®D-Waveã使ã£ã¦ã¿ãçµé¨ãããç©çãå°éã¨ããªã人åãã«éåã¢ãã¼ãªã³ã°ã«ã¤ãã¦è§£èª¬ãããã¨æãã¾ãã
ï¼ã·ãã¥ã¬ã¼ã¿ã®ã³ã¼ãã¯githubã§å
¬éãã¦ãã¾ããç§èªèº«ãéåã¢ãã¼ãªã³ã°ã«ã¤ãã¦ã¯æè¿åå¼·ãå§ããã¨ãããªã®ã§ãè²ã
ãææããã ããã¨å¹¸ãã§ããï¼
ãã¦ãç§ã®æå±ããé¨ç½²ã®å½¹å²ã¨ãã¦ãæ©æ¢°å¦ç¿ã»äººå·¥ç¥è½é¢é£ã®æè¡èª¿æ»ã社å ã¸ã®å±éãè¡ã£ã¦ããããã®ä¸ç°ã¨ãã¦æ¨å¹´12æã«æ©ç¨²ç°å¤§å¦ã®ç°ä¸å çããå¼ã³ãã¦éå¬ããéåã¢ãã¼ãªã³ã°åå¼·ä¼ã社å ã§å¤§å¤å¥½è©ã§ããã
æ¨å¹´åº¦ã¯éåã¢ãã¼ãªã³ã°ã«é¢ããä¸è¬æ¸ç±ãçºå£²ãããããç§å¦éèªãNewtonãã§ãç¹éããã¦ãããç©çå¦è 以å¤ã®ä¸è¬ã®æ¹ã«ããéåã¢ãã¼ãªã³ã°ãèªç¥ããå§ãã¦ããããã«æãã¾ããã¾ããä»å¹´ã®6æã«ã¯AQC2017ï¼Adiabatic Quantum Computing Conference 2017ï¼ã¨ããéåã¢ãã¼ãªã³ã°åéã§ã®æéè¦ãªå½éä¼è°1ãæ¥æ¬ã§éå¬ããããã¨ããããæ¥æ¬å½å ã§ã®çãä¸ããã¯æ¨å¹´ä»¥ä¸ã«ãªãã®ã§ã¯ãªããã¨å人çã«ã¯æã£ã¦ãã¾ãã
ãéåãã¨ããè¨èãèãã¨ãä½ããé£ããããªå°è±¡ãåãããã¨æãã¾ããç§ãæè¿ã¾ã§ã¯ããããããã©ããã£ã¦ä½¿ããã®ãªã®ï¼æ®éã«ããã°ã©ãã³ã°ããã®ï¼ä½ãç©ççãªæä½ãããã®ï¼ç©çã®ç¥èã¯ã©ããããå¿ è¦ãªã®ï¼ãã¨ããç¶æ³ã§ããã ãããªä¸ã3æã«éè¯ãå®éã«D-Waveãæä½ã§ããæ©ä¼2ãããããã®æã«æã£ãã®ã
- ã·ãã¥ã¬ã¼ã¿ã使ãã®ãå®æ©ã使ãã®ãã使ãæ¹ã¨ãã観ç¹ããã¯å¤§å·®ããªãï¼æãããªãã¦è¯ãï¼
- éåã¢ãã¼ãªã³ã°ã®çè«ã«è¸ã¿è¾¼ã¾ãªãã®ã§ããã°ãç©çã®ç¥èã¯å¿ è¦ãªãï¼æãããªãã¦è¯ãï¼
ã¨ãããã¨ã§ããã
ãã£ããã·ãã¥ã¬ã¼ã¿ãæ¸ããããD-Waveã®ä½¿ãæ¹ãããã£ããã使ãã ããªãç©çããããªããã¨ãããã£ãããã³ãã³ãåå¼·ãã¦ãããã¨ãç©çãå°éã¨ããªã人åãã«å±éããã®ãæå³ãããããªãã¨æã£ãã®ã§ãå¯è½ãªéãç©çç¨èªã使ããã«éåã¢ãã¼ãªã³ã°ã«ã¤ãã¦è§£èª¬ãã¦ã¿ããã¨æãã¾ãã
- 対象èªè
- ï¼ç©çå¦ã®å°éçãªç¥èã®ãªãï¼ã¨ã³ã¸ãã¢ã»åæå®
- å¿ è¦ãªç¥è
- ããã°ã©ãã³ã°ã®åºç¤çãªç¥è
- è¡åæ¼ç®ãã§ããç¨åº¦ã®æ°å¦ã®ç¥è
- ãã®è¨äºã§ããããã¨
- éåã¢ãã¼ãªã³ã°ãã·ã³ã®ä½¿ãæ¹ããªãã¨ãªãããã
- éåã¢ãã¼ãªã³ã°ãã·ã³ã使ãä¸ã§å¿ è¦ã¨ãªãã¤ã¸ã³ã°ã¢ãã«ã¸ã®ãããã³ã°ã®ä»æ¹ãããã
- éåã¢ãã¼ãªã³ã°ã®ã·ãã¥ã¬ã¼ã·ã§ã³(éåã¢ã³ãã«ã«ãæ³)ã«ã¤ãã¦ãªãã¨ãªãããã
- ãã®è¨äºã§ããããªããã¨
- éåã¢ãã¼ãªã³ã°ã®çè«çå´é¢
ç®æ¬¡
- ç®æ¬¡
- éåã¢ãã¼ãªã³ã°ã¨ã¯ãªã«ã
- ã¤ã¸ã³ã°ã¢ãã«
- ã·ãã¥ã¬ã¼ã·ã§ã³
- D-Wave ã¨é å¼µãæ¥æ¬å¢
- ã¾ã¨ã
- åèè³æ
éåã¢ãã¼ãªã³ã°ã¨ã¯ãªã«ã
è¿å¹´æ³¨ç®ãæµ´ã³ã¦ãããéåã³ã³ãã¥ã¼ã¿ãã®ä½ãæ¹ã«ã¯ã大ããåãã¦2ã¤ããã¾ãã
1ã¤ç®ã¯ãéååè·¯æ¹å¼ï¼ã²ã¼ãå¼ï¼ãã¨å¼ã°ãããã®ã§ã1980年代ããç 究ãç¶ãããã¦ãã¾ããã
ãã1ã¤ããéåã¢ãã¼ãªã³ã°æ¹å¼ãã¨å¼ã°ãããã®ã§ã1998å¹´ã«æ±äº¬å·¥æ¥å¤§å¦ã®è¥¿æ£®ææãã¡ãææ¡ããææ³ã§ãã
ç¾å¨ä¸è¬çã«ä½¿ããã¦ããã³ã³ãã¥ã¼ã¿ï¼æ¬è¨äºã§ã¯å¤å
¸ã³ã³ãã¥ã¼ã¿ã¨å¼ã³ã¾ãï¼ãã²ã¼ãå¼ã®éåã³ã³ãã¥ã¼ã¿ãæ±ç¨çãªåé¡ã対象ã¨ãã¦ããä¸æ¹ã§ãéåã¢ãã¼ãªã³ã°æ¹å¼ã¯çµã¿åããæé©ååé¡ã«ç¹åãã¦ãã3ã
ãã®ä»£ããã«ãæ±ããå¤æ°ã®æ°4ã¯ã²ã¼ãå¼ãããå§åçã«å¤ããªã£ã¦ãã¾ãã
å¤å ¸ã³ã³ãã¥ã¼ã¿ | ã²ã¼ãå¼ | éåã¢ãã¼ãªã³ã° | |
---|---|---|---|
åä½æ¸©åº¦ | 室温 | 極ä½æ¸© | 極ä½æ¸© |
æ±ããå¤æ°ã®æ° | é常ã«å¤ã | æ°åç¨åº¦ | ã2000å |
対象ã¨ããåé¡ | æ±ç¨ | æ±ç¨ | çµã¿åããæé©ååé¡ |
éåã¢ãã¼ãªã³ã°æ¹å¼ã¯ãã§ãããã¨ãéããã¦ããåé¢ã使ãæ¹ã¯ã¨ã¦ãã·ã³ãã«ã§ãã
å¤å ¸ã³ã³ãã¥ã¼ã¿ãã²ã¼ãå¼ã®éåã³ã³ãã¥ã¼ã¿ã§ã¯ãèªåã®ãããããã¨ãå®ç¾ããã«ã¯ãã¾ãããã°ã©ãã³ã°ãããªããã°ããã¾ããããéåã¢ãã¼ãªã³ã°æ¹å¼ã®å ´åã¯ãã©ã¡ã¼ã¿ãè¨å®ããã ãã§ããä¸è¬ã®ã¦ã§ããµã¼ãã¹ãã¦ã§ãAPIã使ãã®ã¨ä¼¼ãæè¦ã§ãã
å®éãä¸çå¯ä¸ã®åç¨éåã¢ãã¼ãªã³ã°ãã·ã³ã§ããD-Wave ã¯ã¤ã³ã¿ã¼ãããçµç±ã§APIãã³ã¼ã«ããå½¢ã§å©ç¨å¯è½ã§ããD-Waveã®å®æ ãç¥ãã¨ããæå³ã§ã以ä¸ã®åç»ã¯ã¨ã¦ãé¢ç½ãã®ã§èå³ã®ããæ¹ã¯ãã²ã覧ãã ããã
ã¤ã¸ã³ã°ã¢ãã«
éåã¢ãã¼ãªã³ã°ãå©ç¨ããã«ã¯ãã©ã¡ã¼ã¿ããè¨å®ã§ããã°è¯ãã®ã§ãããå ·ä½çã«ã©ããªãã©ã¡ã¼ã¿ãããã®ãã«ã¤ãã¦èª¬æãã¾ããå°ãæ°å¼ãåºã¦ãã¾ãããã容赦ãã ããã
éåã¢ãã¼ãªã³ã°ã¯ãçµã¿åããæé©ååé¡ã解ããã¨ãã§ããã¨ããç¹ã¯å ç¨è¿°ã¹ãã¨ããã§ãããå ·ä½çã«ã¯ä»¥ä¸ã®é¢æ°ãæå°åãã2å¤ãã©ã¡ã¼ã¿ ã®çµã¿åãããã¿ã¤ãããã¨ãã§ãã¾ãã
ãã㧠ããã³ ã¯å®æ°å¤ã®ãã©ã¡ã¼ã¿ã§ãã
ãã®ããã«ãæå°åãããé¢æ°ã ã®2次ã¾ã§ã§è¨è¿°ã§ããåé¡ã®ãã¨ãã¤ã¸ã³ã°ã¢ãã«ã¨ããã ã®ãã¨ãã¹ãã³ã¨å¼ã³ã¾ããã¹ãã³ã®ãããã« ã使ã£ã¦
ã¨æ¸ããå ´å㯠QUBO (Quadratic unconstrained binary optimization)ã¨å¼ã¶ãã¨ãå¤ãã®ã§ããã
ã¨ããã°ãäºãã«å¤æãããã¨ãã§ããã®ã§ãQUBOã¨ã¤ã¸ã³ã°ã¢ãã«ã¯ç価ã§ã5ã
ã¯åãªãå®æ°ãªã®ã§ããã£ã¦ããªãã¦ãããã®ã§ããã ã解éããä¸ã§ä¾¿å©ãªãã¨ãããã®ã§æ®ãã¦ããã¾ãã
ã¡ãªã¿ã«ãä¸ã®å¼ãã ã ã¯æãããªã®ã§ãããæã§å¤å½¢ãã¦ããã¨ã¤ãã¤ãå¿ããã¡ãªã®ã§æ°ãã¤ãã¦ãã ããã
ãã¦ãæ°å¼ã ãè¦ã¦ãã¤ã¡ã¼ã¸ãã¤ããªãã¨æãã®ã§ãç°¡åãªä¾ãè¦ã¦ã¿ã¾ãããã
ä¾1: æãç°¡åãªä¾
æãç°¡åãªä¾ã¨ãã¦ã ã®å ´åãèãã¦ã¿ã¾ãã ãã®å ´åããå±éããã¨
ã¨ãªããå ¨ã¦ã® ã®çµã¿åãããæ¸ãä¸ãã¨ä»¥ä¸ã®è¡¨ã®éãã«ãªãã¾ãã
-1 | -1 | -1 |
-1 | 1 | 1 |
1 | -1 | 1 |
1 | 1 | -1 |
ãè¦ã¦ã¿ãã¨ã ããã㯠ã®ã¨ããæå°å¤ ãã¨ããã¨ããããã¾ãã éåã¢ãã¼ãªã³ã°ã§ã§ããã®ã¯ããã©ã¡ã¼ã¿ ã ãªã©ãåãåã£ã¦ããã® (ããã㯠)ã¨ãã ã®çµã¿åãããè¦ã¤ãããã¨ã ãã§ãã
ãã®ã±ã¼ã¹ã®å ´å㯠ãªã®ã§ãå ¨ã¦ã®çµã¿åãããåæãã¦ã åã ãã§ããããä¾ãã° ã®ã¨ãã®çµã¿åããã®æ°ã¯ã ã¨è¨å¤§ãªæ°ã¨ãªãã¾ãããã®è¨å¤§ãªçµã¿åãããã¿ã¼ã³ã®ä¸ããæé©ãªãã®ï¼æ£ç¢ºã«ã¯ã ãæå°ã¨ããçµã¿åããï¼ãé¸ãã§ãããã®ãéåã¢ãã¼ãªã³ã°ã§ãã
ä¾2: ç»åã®ä¿®å¾©
ä¸è¨ã®ä¾ã ãã ã¨ãå ·ä½çãªä½¿ãæ¹ãã©ããªãã¨ã«ä½¿ããããã¤ã¡ã¼ã¸ããããªãã¨æãã®ã§ãï¼ã¤ãã®ä¾ã¨ãã¦ãç»åã®ä¿®å¾©ãç´¹ä»ãã¾ãã ããã§ã¯2å¤ç»åã対象ã¨ãã¾ãããã°ã¬ã¼ã¹ã±ã¼ã«ç»åãã«ã©ã¼ç»åã«ãé©ç¨å¯è½ã§ãã
以ä¸ã®ãããª2å¤ç»åããã£ãã¨ãã¾ãããã¨ãã¨ã¯ããããªãéåãã¨ããæåã§ããããæ§ã ãªçµç·¯ã§ãã¤ãºãæ··ãã£ã¦ãã¾ã£ãã¨ããè¨å®ã§ã6ããã®ç»åãããã¤ãºãé¤å»ãããã¨ãèãã¾ãã
éåã¢ãã¼ãªã³ã°ã使ãã«ã¯ããã®åé¡ã ã¨ããé¢æ°ãæå°åããåé¡ã«å¸°çãããªããã°ããã¾ããã
ã¾ãã¯ãç»åãã¹ãã³ã§è¡¨ãæ¹æ³ãèãã¾ãã ãããããªæ¹æ³ãèãããã¾ãããä»åã®å ´åã¯ç»åã®åç»ç´ ã2å¤ãªã®ã§ãç´ ç´ã«åç»ç´ ãã¹ãã³ã®å¤ã«å¯¾å¿ããã¦ã¿ã¾ããããç»ç´ ã1ã§ããã°ã対å¿ããã¹ãã³ã+1ã0ã§ããã°-1ã§ãã
次㫠ã ã決ãã¦ããããã®ã§ããããã¤ãºã®æ··ãã£ã¦ããç»å以å¤ã«ä½¿ãããã¼ã¿ããªãã®ã§ãããããå¤é¨ç¥èã¨ãã¦ã以ä¸ã®æ§è³ªãä»®å®ãã¾ãã
- ãã¤ãºé¤å»å¾ã®ç»åã¯ãã¤ãºé¤å»åã®ç»åã¨ä¼¼ã¦ãã
- ããç»ç´ ã¯ãå¨è¾ºã®ç»ç´ ã¨åãå¤ãã¨ãããã
ãã®2ã¤ã®æ§è³ªãæºããã¨ãã ãå°ãããªããã㪠㨠ãè¨å®ãããã¨ãã§ããã°ãéåã¢ãã¼ãªã³ã°ã«ãã£ã¦ ãæå°åãããã®æã®ã¹ãã³ãèªã¿åããã¨ã§ãä¸è¨ã®æ§è³ªãæºãããããªç»åãè¦ã¤ãããã¨ãã§ãã¾ãã
ã¾ã 1. ã«ã¤ãã¦ã¯ã ããã¤ãºãå«ãç»åã®çªç®ã®ç»ç´ ã®å¤(ã ã«ãªããããã®)ã¨ãã¦ã
ã¨ããé
ãå
¥ããã°è¯ãããã§ãã
ï¼ ã¯2次å
ã®åº§æ¨ ã«å¯¾å¿ãããã¨ã«æ³¨æãã¦ãã ããï¼
å®éããã¹ã¦ã® ã®çµã¿åãããè¦ã¦ã¿ãã¨ã
-1 | -1 | -1 |
-1 | 1 | 1 |
1 | -1 | 1 |
1 | 1 | -1 |
ã¨æ¸ãä¸ãã¾ãã ãã®è¡¨ãããä¾1ã®ã¨ãã®ãã㫠㨠ãçããæã« ãå°ãããªããã¨ã確èªã§ãã¾ãã
次㫠2. ã«ã¤ãã¦ã§ãããã¡ãã¯ã ãã¹ãã³ã®è¶³ ã«ä¾åããªãæ£ã®å®æ°ã¨ãã¦ã
ã¨ããé ãèãã¾ãããã㧠ã¯é£æ¥ãã ã¨ã«ã¤ãã¦ã ãåãåããã¨ãæå³ãã¾ãã
ã§ããã°ã ã¨åæ§ã«ã㦠㨠ãçããå ´åã« ãå°ãããªããã¨ãç°¡åã«ãããã¾ãã 両æ¹ã®æ¡ä»¶ãæºããã«ã¯ã 㨠ãåç´ã«è¶³ãããã®
ãå°ããããã°ã ã ãå°ãããªãããã§ãã ã®å¤§ãããã©ããããããããã¨ããåé¡ã¯ããã¾ãããããã¯çµæãã¿ãªãã調æ´ãã¾ãã
ç°¡åã§ããã ã ãè¨å®ããã³ã¼ãã示ãã¾ãã
WEIGHT = 1 NOISED_IMAGE = plt.imread('noised.png') # 0-1ã® np.ndarray j = {} for x in range(1, NOISED_IMAGE.shape[0] - 1): for y in range(1, NOISED_IMAGE.shape[1] - 1): # é£ãåã j ã®ã¿ WEIGHT ãè¨å® j[x, y, x, y + 1] = WEIGHT j[x, y, x + 1, y] = WEIGHT h = NOISED_IMAGE*2 - 1 # 0-1 ã ±1 ã«
ã㮠㨠ãéåã¢ãã¼ãªã³ã°ãã·ã³ã«æããã°ããã¤ãºã®é¤å»ãããçµæãããã£ã¦ãã¾ãã
ã¨ã¯ããéåã¢ãã¼ãªã³ã°ãã·ã³ã®å®æ©ã¯ä½¿ããªãã®ã§ãã·ãã¥ã¬ã¼ã·ã§ã³ããã¦ã¿ã¾ããã ä¸è¨ã® 㨠ãã·ãã¥ã¬ã¼ã¿ã«æãã¦ã¿ãçµæã以ä¸ã¨ãªãã¾ãã
å ç»åã§ã¯ãªãã©ã³ãã ãªã¹ãã³ã§åæåãã¦ããã®ã§ãã©ã³ãã ã ã£ãã¹ãã³ãå¾ã ã«ããã£ã¦ããæ§åãããããã¨æãã¾ãï¼ä¸è¨ã®ã³ã¼ãã§å®å¼åããã¨ã左端ã¨ä¸ç«¯ã«ã´ããæ®ãã¾ãï¼ã
ãã®ããã«ãéåã¢ãã¼ãªã³ã°ã使ãã«ã¯ãé©åãªãã©ã¡ã¼ã¿ãæ¢ãåºãä½æ¥ï¼ã¤ã¸ã³ã°ã¢ãã«ã¸ã®ãããã³ã°ï¼ãå¿ è¦ã¨ãªãã¾ãã ãããã³ã°ã®æ¹æ³ã¯åé¡æ¯ã«éãã®ã§ã解ãããåé¡æ¯ã« ãã©ããããèããªããã°ããã¾ããã æåãªåé¡ã«ã¤ãã¦ã¯ã©ããã£ãããããã¾ã¨ã¾ã£ã¦ããè«æ ãããã®ã§ã ããå®è·µçãªåé¡ã解ãå ´åã¯ããã®è«æãåç §ããªããåé¡ã«åãã㦠ãæ§æãã¦ããã®ãè¯ãããã§ãã
ä¾3: å·¡åã»ã¼ã«ã¹ãã³åé¡
次ã«ãããå°ãè¤éãªä¾ã¨ãã¦ãå·¡åã»ã¼ã«ã¹ãã³åé¡ãç´¹ä»ãã¾ãã å·¡åã»ã¼ã«ã¹ãã³åé¡ã¯ããã»ã¼ã«ã¹ãã³ãé½å¸ãã¾ããã¨ãã«æå°ã®ç§»åè·é¢ã§åããªãããã¨ããåé¡ã§ãããã®åé¡ãã®ãã®ããã¸ãã¹ã§å¿ç¨ããæ©ä¼ã¯ãã¾ããªããã¨æãã¾ãããå°ãæ¡å¼µãããã¨ã§é éè¨ç»ã®æé©åãªã©å¤å½©ãªå¿ç¨å ãããã¾ããä¸è¿°ã®è«æã«ãã£ã¦ãä¸å³ã®ããã«ã¤ã¸ã³ã°ã¢ãã«ã«ãããã³ã°ãã¾ãã
ç»å修復ã®ã¨ãã¨éã£ã¦ãQUBOï¼å¤æ°ã ï¼ã§ãããã¨ã«æ³¨æãã¦ãã ããã
Aã«0çªç®ï¼ï¼ã¹ã¿ã¼ãï¼ã«ããã®ã§ã対å¿ãã ã ã§ãã以å¤ã ã次ã«Dã«è¡ãã®ã§ã対å¿ãã ã ã§ãã以å¤ã ã... ã¨ããããã«ãªã£ã¦ãã¾ãã Aã¨Dã®è·é¢ã ã®ããã«æ¸ãã¨ãå ¨é½å¸ãåã£ãã¨ãã®ç·è·é¢ã¯
ã§è¡¨ãã¾ãããã㧠ã¯é çªããã ã¯é½å¸ã表ãã¾ãã ã«ã¤ãã¦äºæ¬¡å½¢å¼ãªã®ã§ãéåã¢ãã¼ãªã³ã°ã§æé©åãããã¨ãã§ãããã§ãã
å¶ç´ã®è¿½å
å®ã¯ä¸è¨ã® ã®æå°å¤ã¯èªæã§ããå®éãå ¨ã¦ã® ã ã®ã¨ãã ã¯æå°å¤ã® ãã¨ãã¾ãã ãå ¨ã¦ ã®ç¶æ ã¨ããã®ã¯ãã©ãã«ãè¡ã£ã¦ããªãï¼ç§»åè·é¢ã¯ ï¼ãã«å¯¾å¿ãã¦ãã¾ãã
å½ç¶ããã¯æ±ãããã£ã解ã§ã¯ããã¾ãããã»ã¼ã«ã¹ãã³ã«ã¯ãå ¨ã¦ã®é½å¸ãåã£ã¦ããããªããã°ããã¾ããã ããä¸åº¦åé¡ãè¦ã¤ãç´ãã¦ã¿ãã¨ã以ä¸ã®æ¡ä»¶ãå¿ è¦ã§ãããã¨ããããã¾ãã
åæå»ã«ã»ã¼ã«ã¹ãã³ã¯ã©ããã®1é½å¸ã«ããããªã
å ¨ã¦ã®é½å¸ãã¡ããã©1度ãã¤éã
ãã®2ã¤ã®æ¡ä»¶ãæºãããã¦ããã°ããã»ã¼ã«ã¹ãã³ãå ¨ã¦ã®é½å¸ãã¾ãããã¨ããä¿è¨¼ã§ãã¾ãã ã§ã¯ããããã®å¶ç´ãã©ããã£ã¦ã¤ã¸ã³ã°ã¢ãã«ã«åãè¾¼ãã°ããã§ãããã?
ã·ãã¥ã¬ã¼ã·ã§ã³ããã ãã§è¯ãã®ã§ããã°ããããããå¶ç´ãæºãããªãç¶æ ã¯æ¢ç´¢ããªããã¨ããã¢ããã¼ã7ãããã¾ãããå®éã®éåã¢ãã¼ãªã³ã°ãã·ã³ã使ãããå ´åã¯ããããã£ãå¶ç´ãä»»æã«è¿½å ãããã¨ã¯ã§ãã¾ããã
ããã§å¿ è¦ã¨ãªãã®ããã®ä¿®æ£ã§ãã éåã¢ãã¼ãªã³ã°ãã·ã³ãã§ããã®ã¯ãããã¾ã§ ãæå°ã«ãã¦ããããã¨ã ãã§ãã å¶ç´ãæºããã¦ããå ´åã«ã®ã¿ãæå°å¤ãã¨ãããã« ãä¿®æ£ãããã¨ã§ãèªåçã«å¶ç´ãæºããã¦ãããããã«ããå¿ è¦ãããã¾ãã
ããã§ã¯å ·ä½ä¾ãã¿ã¦ã¿ã¾ããããã¾ã1.ã®å¶ç´ãå¤å½¢ãã¦ã¿ã¾ãã
ãã®å¼ã¯ å ¨ã¦ã® ã§æãç«ããªãã¨ãããªãã®ã§ã左辺ãã¾ã¨ã㦠ã¨æ¸ããã¨ã«ãã¾ãããã
ãã® ãäºä¹ã®åã®å½¢ã«ãªã£ã¦ããã®ããã¤ã³ãã§ãã©ã㪠ã«å¯¾ãã¦ãå¿ ã ã§ããã¹ã¦ã® ã«å¯¾ãã¦å¶ç´ãæºããã¦ããå ´åã®ã¿ãæå°å¤ã® ãã¨ãã¾ãã
ã®ãããã«ã以ä¸ã® ãèãã¾ãã
ãã㧠ã¯é常ã«ã«å¤§ããªæ°ã¨ãã¾ãã
ã大ããã®ã§ããå°ããããã«ã¯ãã¨ã«ãã ã ã«ããªããã°ããã¾ããã
ãã£ã¦ã ãæå°ã¨ããã®ã¯ ã®ãªã㧠ãæå°ã«ãããã®ãã¨ãããã¨ã«ãªãã¾ãã
ãå¶ç´1. ã表ãã¦ãã¾ããããããã®ç¶æ
ããå¶ç´1.ãæºããã¦ãã¦ãã㤠ãæå°å¤ãã¨ããç¶æ
ã«ãªãã¾ãã
å¶ç´2.ã«ã¤ãã¦ãåæ§ã®è°è«ããããã¨ãã§ããã®ã§ãçµå± ã®ä»£ããã«
ãæå°åããã°ãããã¨ããããã¾ãã ãã®å¼ãå±éãã¦ã 㨠ãæ±ããã³ã¼ãã¯ä»¥ä¸ã®ã¨ããã§ãã å±éã®éã«ã¯ã ãªã®ã§ã ã§ãããã¨ã使ã£ã¦ãã¾ãã
coeff = 2.0 # A ã®å¤ã è·é¢ã®æå¤§å¤ * coeff ã¨ãã n_cities = len(positions) # positions ã«ã¯é½å¸ã®åº§æ¨ãå ¥ã£ã¦ãã j = collections.defaultdict(int) max_dist = 0 # 第ä¸é ã®é¨åãè¨å® for t in range(n_cities): for a in range(n_cities): for b in range(n_cities): d = dist(positions[a], positions[b]) # dist ã¯è·é¢ãè¨ç®ããé¢æ° max_dist = d if max_dist < d else max_dist j[a, t, b, (t + 1)%n_cities] = -d # Aã¯ååã«å¤§ãããªããã°ãªããªã A = max_dist * coeff # 第äºé ã®2次ã®é¨åãè¨å® for t in range(n_cities): for a in range(n_cities): for b in range(n_cities): if a != b: j[a, t, b, t] -= 2*A # 第3é ã®2次ã®é¨åãè¨å® for a in range(n_cities): for t1 in range(n_cities): for t2 in range(n_cities): if t1 != t2: j[a, t1, a, t2] -= 2*A # 1次ã®é¨åãã¾ã¨ãã¦è¨å® h = np.zeros((n_cities, n_cities)) for t in range(n_cities): for a in range(n_cities): h[a, t] += 2*A # å®æ°é¨å c = -2*A*n_cities
ã㮠㨠ã ãéåã¢ãã¼ãªã³ã°ãã·ã³ã«æããã°ãæé©è§£ãå¾ããã¨ãã§ãã¾ããï¼cã¯ãã£ã¦ããªãã¦ãããã®ã§ããããã㨠ã®å¤ããã®ã¾ã¾è·é¢ã«ãªãã¾ãï¼ ã·ãã¥ã¬ã¼ã·ã§ã³ã®çµæã¯ãã¡ããã覧ãã ããã
ã·ãã¥ã¬ã¼ã·ã§ã³
ä¸è¿°ã®éããéåã¢ãã¼ãªã³ã°ã使ã£ã¦æé©ååé¡ã解ãã«ã¯ã以ä¸ã®ã¹ããããè¸ã¿ã¾ãã
- 課é¡ãæ´çã解ãã¹ãåé¡ãç¨æãã
- ã¤ã¸ã³ã°ã¢ãã«ã¸ã®ãããã³ã°ãè¡ã
- ï¼éåã¢ãã¼ãªã³ã°ãã·ã³ãå©ç¨ãã¦ï¼ã¤ã¸ã³ã°ã¢ãã«ã®æé©è§£ãè¦ã¤ãã
- çµæã解éãã
å ç¨ã®ä¾ã§ã¯ã3. ã®éåã¢ãã¼ãªã³ã°ãã·ã³ã®é¨åãã·ãã¥ã¬ã¼ã¿ã§æ¸ã¾ãã¾ãããã ãã£ããã§ãã®ã§ãã¡ãã£ã¨æ·±æããã¦ãã·ãã¥ã¬ã¼ã·ã§ã³ã®ä»çµã¿ã«ã¤ãã¦ç´¹ä»ãããã¨æãã¾ãã
æé©è§£ãè¦ã¤ããä»çµã¿
éåã¢ãã¼ãªã³ã°ã®ã·ãã¥ã¬ã¼ã·ã§ã³ã«é²ãåã«ããã®ãã¨ã¨ãªã£ãã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã«ã¤ãã¦ãç°¡åã«èª¬æãã¾ãã
ä¸å³ã®ç¸¦è»¸ã¯ ã横軸㯠ï¼ããã㯠ï¼ã表ãã¦ããã¨æã£ã¦ãã ããã ï¼ ã¯é£ç¶ã§ãªãã®ã§ãæ£ç¢ºã«ã¯ãã®ãããªãªããããªå³ã«ã¯ãªãã¾ããããã¤ã¡ã¼ã¸ã¯ä¼ããã¨æãã¾ããï¼
ããã§ããããã®ã¯ã ãæå°ã«ãã ãè¦ã¤ãããã¨ã§ãã ä¸è¿°ã®éããçµã¿åããã®æ°ã¯è¨å¤§ã§ãå ¨ã¦ã®çµã¿åããã調ã¹ãããã«ã¯ãããªãã®ã§ããªãã¹ãå¹çãã ã®å°ããç¹ãæ¢ãã¦ããã¾ãã
æãç°¡åã§ããã¾ãã¾ãªã¢ã«ã´ãªãºã ã®ãã¼ã¹ã¨ãªããã®ã¨ãã¦æããããã®ã¯ãè¿åæ¢ç´¢æ³ã¨å¼ã°ãã以ä¸ã®ãããªæ¹æ³ã§ãã
1. é©å½ã«1ç¹ ã決ã㦠ã®å¤ã調ã¹ã ã¨ãã 2. ã®è¿ãã®ç¹ ãé©å½ã«é¸ã³ã ã®å¤ã調ã¹ã ã¨ãã 3. 㨠ãæ¯è¼ãã¦ã - ã®ã»ããå°ããã£ããããªã«ãããªã - ã®ã»ããå°ããã£ããã ãæ°ãã« ã¨ãã 4. æ°ã㪠ã§ä¸è¨ãç¹°ãè¿ã
ãä¸ãåããããããã ããããã° ã¯å°ãããªããããã¨ããçºæ³ã§ãã ããããå³ã®ããã«å¸å¹ãããããããå ´åã¯ãå±±ãè¶ ãããã¨ãã§ããã«å±æçãªæé©è§£ã«ãã©ããããã¦ãã¾ãããããã®ãããªæ¹æ³ã§ã¯ãã¾ãããã¾ããã
ããã§ããé©å½ãªç¢ºçã§å±±ãé£ã³è¶ããããã«ããããã¨ããã®ãã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã§ãã
ã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°
ã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã§ã¯ããã®å±±ãé£ã³è¶ãã確çããç©çå¦ã§ããã¨ããã®æ¸©åº¦ï¼ã®éæ°ï¼ã«å¯¾å¿ãããã©ã¡ã¼ã¿ ã§èª¿æ´ãã¾ãã å ·ä½çã«ã¯ãããç¶æ ãå®ç¾ããã確çã
ã«æ¯ä¾ããã¨ãã¦ã ãå°ããå¤ããå¾ã
ã«å¤§ãããã¦ããã¾ãã
(ããã¯å¾ã
ã«æ¸©åº¦ãä¸ãã¦ãããã¨ã«å¯¾å¿ãã¾ãã)
ã®å¹æã®ãããã§ã ãå°ããæã«ã¯å¤§ããªå±±ãè¶ ããããã ã大ãããªãã¨ãå°ããªå±±ããè¶ ããããªãããã«ãªãã¾ããã¯ããã¯å°ãã ã§å±±ãé£ã³è¶ããããããã«ãã¦è²ã ãªå ´æãæ¢ç´¢ãã¦ã¿ã¦ãæçµçã« ã大ãããããã¨ã§ã解ãå®å®ããã¾ãã
ã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã®ã¢ã«ã´ãªãºã ã¯ã以ä¸ã®ã¨ããã§ãã
1. é©å½ã«1ç¹ ã決ã㦠ã®å¤ã調ã¹ã ã¨ãã 2. ã®è¿ãã®ç¹ ãé©å½ã«é¸ã³ã ã®å¤ã調ã¹ã ã¨ãã 3. 㨠ãæ¯è¼ãã¦ã - ã®ã»ããå°ããã£ããã確ç ã§ã ãæ°ãã« ã¨ãã - ã®ã»ããå°ããã£ããã ãæ°ãã« ã¨ãã 4. ãå°ã大ãããã 5. æ°ã㪠ã§ä¸è¨ãç¹°ãè¿ã
ã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã¯ã温度ãååã«ãã£ããã¨ä¸ãã¦ããã°ç¢ºå®ã«æé©è§£ãå¾ããããã¨ãçè«çã«ã¯ç¥ããã¦ãã¾ããã温度ã®ä¸ãæ¹ãéãããã¨å±æ解ã«ãã©ããããã¦ãã¾ãå¯è½æ§ãããã¾ãã
ã·ãã¥ã¬ã¼ã¿ã§ã¯ã確ççã« s ãé¸ã³ç´ãé¨å㨠βã大ããããé¨åã«åãã¦å®è£ ãã¦ãã¾ãã èå³ãããã°ã確èªãã ããã
éåã¢ãã¼ãªã³ã°ï¼éåã¢ã³ãã«ã«ãã·ãã¥ã¬ã¼ã·ã§ã³ï¼
ã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã§ã¯ã1度ã«1ã¤ã®ç¹ããè¦ã¦ããªãã®ã«å¯¾ãã¦ãéåã¢ãã¼ãªã³ã°ã®ã·ãã¥ã¬ã¼ã·ã§ã³ã§ã¯ãè¤æ°ï¼ããã§ã¯ åã¨ãã¾ãï¼ã®å°ç¹ã§åæã«æ¢ç´¢ãå§ãã¾ãã
ï¼ãã® ã®ãã¨ããããã¿æ°ã¨è¨ãã¾ããï¼
éåã¢ãã¼ãªã³ã°ã§é¢ç½ãã®ã¯ããã® åã®ç¶æ ãäºãã«ç¬ç«ã§ã¯ãªãããäºãã«å¹²æ¸ããªããæé©ãªç¶æ ãæ¢ãã¦ãããã¨ã§ããããã«ãã£ã¦ãå±±ã®åããå´ããè¦ãè¦ãããªããæé©è§£ãæ¢ãããã¨ã«ãªãã¾ã8ã
å¹²æ¸ãå¼·ããã°ãäºãã«åãç¶æ ã«ãªããã¨ãã¦ãå°ãããã°ãäºããæ°ã«ããã«ï¼å±æçãªï¼æé©è§£ãæ¢ããã¨ã«ãªãã¾ãã åãç¶æ ã«ãªããã¨ããã¨ãã ã·ãã¥ã¬ã¼ãã£ããã¢ãã¼ãªã³ã°ã¨åæ§ã« ãå°ããæ¹ãå®ç¾ãããããããã«ãã¦ãããã¨ã§ãå¾ã ã«ã¨ãã«ã®ã¼ã®ä½ãç¶æ ã«å¼ãå¯ããããããã«éã¾ã£ã¦ããããã«ãªãã¾ãã
ãã®å¹²æ¸ã®å¼·ãã調æ´ãããã©ã¡ã¼ã¿ã ï¼ ãå°ããã»ã©å¹²æ¸ãå¼·ãï¼ã¨æ¸ããã¨ãå¤ãã®ã§ããããã® ã¯ç©çå¦ã§ã¯æ¨ªç£å ´ã®å¼·ãã¨å¼ã°ãã¦ãããã®ã§ãã ãç£ç³ã¨è¦ç«ã¦ãã¨ãã«ã横ããç£å ´ãããããã¨ã«å¯¾å¿ãã¦ãã¾ãã
ã¡ãã£ã¨è©±ãæ½è±¡çãªã®ã§ãå ·ä½çãªå¼ã§èª¬æãã¾ããæé©åãããé¢æ° ã
ã¨ãã¾ããéåã¢ã³ãã«ã«ãã»ã·ãã¥ã¬ã¼ã·ã§ã³ã§ã¯ããã¨ãã¨ã® ã®ä»£ããã«
ãæå°åãã¾ãã
ä¸æ°ã«è¤éã«ãªã£ãæãããã¾ãã... 第ä¸é
ã¯ãæ¬å¼§ã®ä¸ãã¾ãã« ã¨åãå½¢ããã¦ããã åã®ã·ãã¥ã¬ã¼ã·ã§ã³ãåæã«èµ°ãããã¨ã表ãã¦ãã¾ãã 第äºé ã®
ã¯ã 㨠ã¨ã®å¹²æ¸ã表ãã¦ãã¾ãã ãå°ãããªãã¨ã ã大ãããªããå¹²æ¸ãå¼·ããªããã¨ããããã¾ãã(å¹²æ¸å¼·ããã°å¼·ãã»ã© 㨠ã¯åãå¤ãåãããããªãã¾ãã)
ã·ãã¥ã¬ã¼ã¿ã§ã¯ã ãããã§å®ç¾©ãã¦ãã¦ããã㧠ãæ´æ°ãã¦ãã¾ãããåèã¾ã§ã
D-Wave ã¨é å¼µãæ¥æ¬å¢
ããã¾ã§ã¯ãããããã·ãã¥ã¬ã¼ã¿ã®ã§ãããã¨ã¯éåã¢ãã¼ãªã³ã°ãã·ã³ã®å®æ©ã§ãã§ãããã®ããã«æ¸ãã¦ãã¾ããããå®éã«ã¯ãããããªå¶ç´ãããã¾ãã
ä¾ãã°D-Wave ã®ææ°ç D-Wave 2000Q ã§ãã£ã¦ãã¹ãã³æ°ã¯é«ã 2000åã§ãç¾å®çãªæé©ååé¡ã解ãã«ã¯ã¾ã ã¾ã 足ãã¾ãããã¾ããã¹ãã³å士ã¯ãã¡ã©ã°ã©ãã¨å¼ã°ããç¹æ®ãªçµåã®ãããããã¦ããããã ãä»»æã«è¨å®ã§ããã·ãã¥ã¬ã¼ã·ã§ã³ã¨éãã ã®ä¸é¨åããè¨å®ãããã¨ãã§ãã¾ããããã®ããã¤ã¸ã³ã°ã¢ãã«ã¸ã®ãããã³ã°ãããã«é£ãããªã£ã¦ãã¾ãã
ãããã£ã課é¡ã«å¯¾ãã¦ãD-Wave ã®éçºå ã§ãã D-Wave Systems 社ãç¡çã§ã¯ããã¾ãããå½¼ãã¯ã2å¹´ãã¨ã«éåãããï¼ã¹ãã³ï¼ã®æ°ã2åã«ãããã¨å ¬è¨ãã¦ãå®éã«ãã®å ¬ç´ãå®ãç¶ãã¦ãã¾ãããã¡ã©ã°ã©ãã®è©±ã«ã¤ãã¦ããå½¼ãèªèº«ããããã³ã°æ¹æ³ã解説ãã¦ãã¾ããã大è¦æ¨¡ãªåé¡ãèªåçã«åå²ãã¦D-Waveãã·ãã¥ã¬ã¼ã·ã§ã³ã§è§£ãã¦ãããqbolvã¨ããã½ãããå ¬éãã¦ãã¾ãã®ã§ãä»å¾ã¯ä½¿ãããããªã£ã¦ãããã®ã¨æããã¾ãã
ããããå½¼ãã¯ããéåã³ã³ãã¥ã¼ã¿ã¼ãªãã¦é ãæªæ¥ã®è©±ãã¨è¨ããã¦ããæ代ãããå·ããããªè¦ç·ãæ°ã«ãããèªåãã¡ã®ä¿¡å¿µã«åºã¥ãã¦ç 究ãéããã¤ãã«åç¨ã®éåã³ã³ãã¥ã¼ã¿ãå®æããããã¢ãã人ãã¡ã§ããããä»å¾ã«æå¾ ããã«ã¯ãããã¾ããã
ãã¦ãD-Wave Systems 社ãé å¼µã£ã¦ããä¸æ¹ã§ãå®ã¯æ¥æ¬å¢ãããªãé å¼µã£ã¦ãã¾ãã
NEDOï¼å½ç«ç 究éçºæ³äººæ°ã¨ãã«ã®ã¼ã»ç£æ¥æè¡ç·åéçºæ©æ§ï¼ãIoTæ¨é²ã®ããã®æ¨ªææè¡éçºããã¸ã§ã¯ããã§ã¯ããçµåãæé©åå¦çã«åããé©æ°çã¢ãã¼ãªã³ã°ãã·ã³ã®ç 究éçºãã¨ãããã¼ããæ¡æããããã®ä¸ã§éåã¢ãã¼ãªã³ã°ãã·ã³ã®éçºã«åãçµãã§ãã¾ã9ã
éåã¢ãã¼ãªã³ã°ã«ãã ããããã¤ã¸ã³ã°ã¢ãã«ãé«éã«è§£ãã¨ãã観ç¹ã§ã¯ã ä¾ãã°æ ªå¼ä¼ç¤¾æ¥ç«è£½ä½æã¯ãå¾æ¥ã®CMOSæè¡ã使ã£ãCMOSã¢ãã¼ãªã³ã°ã¨ããææ³ãéçºããç£å¦é£æºã§ç 究ãé²ãã¦ãã¾ãããæ ªå¼ä¼ç¤¾å¯å£«éç 究æã¯FPGAã使ã£ãæè¡ãéçºãã¦ãã¾ããå é£åºä¸»å°ã®ImPACTã¨ããããã¸ã§ã¯ãã§ã¯ãã³ãã¼ã¬ã³ãã¤ã¸ã³ã°ãã·ã³ã¨å¼ã°ããæ¹å¼ã®ç 究ãé²ãããã¦ããããã®æ©è½ãã¯ã©ã¦ãã§æä¾ããã¨çºè¡¨ãã¦ãã¾ãã
éåã¢ãã¼ãªã³ã°ãæå±ãã西森å çã®ãèå ã§ããæ¥æ¬ã«ã¯ããã²ã¨ãé å¼µã£ã¦ãããããã¨æã£ã¦ãã¾ãã
ã¾ã¨ã
ãã£ããã·ãã¥ã¬ã¼ã¿ãä½ã£ã¦ã¿ãã®ã§ããã®çµé¨ããã¨ã«éåã¢ãã¼ãªã³ã°ã«ã¤ãã¦è§£èª¬ãã¾ããã
åèè³æ
- éåã³ã³ãã¥ã¼ã¿ã人工ç¥è½ãå éãã
- 西森å çã¨å¤§é¢å çã«ããä¸è¬åãã®æ¬ãä¸è¬åãã«ãé¢ãããããªãå ·ä½çãªãã¨ã¾ã§æ¸ãã¦ããã
- éåã¢ãã¼ãªã³ã°æ³ã¨D-Waveãã·ã³
- 西森å çã«ããD-Waveã«ã¤ãã¦ã®è§£èª¬è¨äº
- Software | D-Wave Systems
- D-Waveã®ã½ããã¦ã§ã¢ã¢ã¼ããã¯ãã£
- An Introduction to Quantum Computing, D-Wave Style
- DWaveSystems ã«ããD-Waveã®å ¥éè³æ
- éåã¢ãã¼ãªã³ã°ã®æ°ç
- 西森å çã«ããéåã¢ãã¼ãªã³ã°ã®çè«çãªå´é¢ã®è¬ç¾©è³æ
- éåã¢ãã¼ãªã³ã°æ³ãç¨ããã¯ã©ã¹ã¿åæ
- éåã¢ã³ãã«ã«ãã«ã¤ãã¦ãã¾ã¨ã¾ã£ã¦ãããç°ä¸å çã«ããéåã¢ãã¼ãªã³ã°ã®ã¯ã©ã¹ã¿ãªã³ã°ã¸ã®å¿ç¨ã«é¢ããè«æã
- 次ä¸ä»£éåæ
å ±æè¡ãéåã¢ãã¼ãªã³ã°ãæãæ°æ代ã-- æ
å ±å¦çã¨ç©çå¦ã®ãã¼ã¢ãã¼
- ç°ä¸å çã«ããéåã¢ãã¼ãªã³ã°ã®è§£èª¬ã¹ã©ã¤ã
- anneal
- æ¬è¨äºã«åºã¦ããã·ãã¥ã¬ã¼ã¿ã®ã½ã¼ã¹ã³ã¼ã
- æ¬è¨äºã«åºã¦ããã·ãã¥ã¬ã¼ã¿ã®ã½ã¼ã¹ã³ã¼ã
å½ç¤¾ã§ã¯ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããã¨ã³ã¸ãã¢ã®æ¹ãç©æ¥µçã«æ¡ç¨ãã¦ãã¾ããããã°ã«èå³ãæã£ãæ¹ã¯ãã²ãå¿åãã ããï¼ ä»ã«ãã³ã³ãµã«ãã¯ãããã¾ãã¾ãªè·ç¨®ã§åéããã¦ãã¾ãã®ã§ããã¼ã¿åæãå½ç¤¾ã®åãçµã¿ã«èå³ã®ããæ¹ããã²ãå¿åãã ããã www.brainpad.co.jp
- æ¨å¹´ã®AQCã§ã¯Googleãç¬èªã«éåã¢ãã¼ãªã³ã°æ¹å¼ã®éåã³ã³ãã¥ã¼ã¿ã¼ãéçºãã¦ãããã¨ãæãããã話é¡ã«ãªãã¾ãããâ©
- ã¢ã¸ã¢ã§åãã¦éå¬ãããD-Waveã®ã»ããã¼ã«åå ããã¦ããã ãã¾ããï¼ãããããéãã§ãï¼â©
- æè¿ã¯ãçµã¿åããæé©ååé¡ã ãã§ãªããæ©æ¢°å¦ç¿ã§ãã°ãã°å¿ è¦ã«ãªããµã³ããªã³ã°ã«ãå©ç¨ãããã¨ããåããããã¾ããä»å¾æ©ä¼ãããã°ããã¡ãã«ã¤ãã¦ãã¾ã¨ãããã¨æãã¾ããâ©
- æ£ç¢ºã«ã¯éåããã(qubit)ã¨ããåä½ã§ããâ©
- QUBOã® ã«åºã¦ããè² å·ã¯ãã¤ã¸ã³ã°ã¢ãã«ã®æ £ç¿ã«ãããããã®ã§ãããè² å·ãªãã§å®ç¾©ãã¦ãæ§ãã¾ãããâ©
- ããªã¼ãã©ã³ãã®éæ³è¡¡å±±ãã©ã³ãTã使ããã¦ããã ãã¾ãããâ©
- ä¾ãã° http://qiita.com/ab_t/items/8d52096ad0f578aa2224 ã¯ãã®ã¢ããã¼ãã§ããâ©
- 詳ããã¯è¥¿æ£®å çã»å¤§é¢å çã®èæ¸ãã覧ãã ãããâ©
- http://www.nedo.go.jp/news/press/AA5_100602.htmlâ©