Binning benchmarking involves the following steps
coassembly: read correction -> assembly -> mapping -> generate_abundance_matrix -> binning -> assessment
single-sample: read correction -> single-sample_assembly -> single-sampleread_mapping -> generate_abundance_matrix -> binning -> assessment
multi-sample: read correction -> sample-wise_assembly -> pool_allsampleassembly_contigs -> mapping -> generate_abundance_matrix -> binning -> split_bins -> remove_redundantbins -> assessment
Reads correction is done by CoCo (https://github.com/soedinglab/CoCo). The correction is efficitive if k-mer counts are computed using reads pooled from all samples.
Concatenate reads for CoCo correction
cat *_reads.fq > all_reads.fq
Compute k-mer counts using dsk tool (https://github.com/GATB/dsk)
dsk -file all_reads.fq -kmer-size 41
(output: all_reads.h5)
Correct reads using CoCo
coco correction --reads all_reads.fq --counts all_reads.h5 --outdir allreads_coco_corrected
(output: all_reads.corr.reads.fq)
Split reads by sample origin
splitreadsbysample <sampleid_file> <fastq_file> <outdir>
(output: <sample_id>.fastq)
MEGAHIT must be installed (https://github.com/voutcn/megahit.git)
megahit --12 *_reads.fastq -t 64 --presets meta-sensitive -o megahit_out
megahit --12 <sample_id>_reads.fastq -t 64 --presets meta-sensitive -o <sample_id>_megahit_out
cat *_megahit_out/final.contigs.fa > allcontigs_concatenatedallsamples.fa
(concatenate all sample assemblies into one master file)
Strobealign is the fast and accurate aligner. We used to obtain the abundance matrix. (https://github.com/ksahlin/strobealign.git)
mkdir samfiles
strobealign -t 64 --aemb megahit_out/final.contigs.fa --eqx --interleaved <sample_id>.fastq > samfiles/abundances_<sample_id>.tsv
strobealign -t 64 megahit_out/final.contigs.fa --eqx --interleaved <sample_id>.fastq | samtools view -h -o samfiles/<sample_id>_strobealign.sam
strobealign -t 64 --aemb allcontigs_concatenatedallsamples.fa --eqx --interleaved ${sample_id}.fastq > samfiles/abundances_<sample_id>.tsv
strobealign -t 64 allcontigs_concatenatedallsamples.fa --eqx --interleaved ${sample_id}.fastq |samtools view -h -o samfiles/<sample_id>_strobealign.sam
If you have used other aligners (eg. bowtie2, bwa-mem), use our in-house script
samtools view samfiles/<sample_id>_strobealign.sam | aligner2counts samfiles <sample_id> --only-mapids
python util/get_abundance_tsv.py -i <samfiles> -l <contig_length> -m <minlength|1000>
contig_length is a tab separated .txt
file that should contain contig ids and length (contig_id\tlength). This file can be generated using convertfasta_multi2single
executable (see README.md in util/
).
inputdir is the directory of sample-wise abundance.tsv file. abundances_<sample_id>.tsv
samtools sort samfiles/<sample_id>_strobealign.sam -o samfiles/<sample_id>_strobealign_sorted.bam
Refer to benchmarking_scripts.ipynb. Ensure the order of contigs in the abundance matrix matches the assembly FASTA file.
By default, most deep learning methods can split bins by sample id in multi-sample binning mode (McDevol, VAMB and GenomeFace). But tools such as COMEBin and MetaBAT2 don't have an option for it. To perform splitting, use our script in util/
.
python splitfasta_bysampleids.py --input_dir <bindir> --output_dir <outputdir> --format <binformat|fasta>
This script assumes that sample id is located in-between S
and C
characters. For example, from a contig id S1C141_284
, it will detect 1
as the sample id.
For this benchmarking, we mapped bins to source genomes for AMBER assessment as described in README.md in util/
. However, it can be performed with de-replication approach dRep
(https://github.com/MrOlm/drep). We leave the choice to the user.
CheckM2 is a neural network-based method that estimates bin completeness and purity. (https://github.com/chklovski/CheckM2.git)
checkm2 predict --input <binning_tool>_results -o <binning_tool>_results/checkm2_results --thread 24 -x fasta
For the binning of contigs from gold-standard sets, we used AMBER assessment. (https://github.com/CAMI-challenge/AMBER.git)
amber.py <binning_tool>_cluster.tsv -g gsa_pooled_mapping_short.binning -o amber_results
where gsa_pooled_mapping_short.binning files for marine, strain-madness and plant-associated datasets were obtained from the CAMI2 assessment study.
CheckM is used to validate MetaBAT2 and MetaWRAP bin_refinement results. (https://github.com/Ecogenomics/CheckM.git)
checkm lineage_wf <binning_tool>_results <binning_tool>_results/checkm_results -x fasta -t 24
Extract reads for each bin
For combined read fastq and mapfiles
extractreads <fullpath/binfastafolder> <allsample_mapids> <all_reads.corr.reads.fq> -f (binformat|fasta)
For sample-wise processing
for sample in samplelist;
do
extractreads fullpath/binfastafolder ${sample}_mapids ${sample}.fastq -f (binformat|fasta);
done
allsample_mapids
is a text file containing mapped read_id and contig_id separated by tab
. This file can be generated using aligner2counts
executable (see README.md in util/
) for each sample as <sample_id>_mapids
. Concatenate these sample-wise mapids to obtain allsample_mapids
. From extracreads run, you will get <bin_id>.fastq
. The extracted <bin_id>.fastq file will have reads from all samples.
spades.py --12 <bin_id>.fastq --trusted-contigs <bin_id>.fasta --only-assembler --careful -o <bin_id>_assembly/ -t 12 -m 128
SPAdes
must be installed.
Refer to workflow_reassemble
workflow to run the entire steps in a single run.
Refer to plots.ipynb