Skip to content

Metric learning models in PyTorch with results on CUB2011, CARS196, Stanford Online Products

Notifications You must be signed in to change notification settings

rspezialetti/metriclearningbench

 
 

Repository files navigation

Metric learning models in PyTorch, recall@1

CUB2011 CARS196 Stanford Online Products
Margin contrastive loss, semi-hard 0.58 @ epoch60 0.80 @ epoch60 0.7526 @ epoch90
Lifted structured embedding
Triplet loss

Original impl published at: https://github.com/apache/incubator-mxnet/blob/master/example/gluon/embedding_learning/model.py

Examples

# evaluation results are saved in ./data/log.txt

# train margin contrastive loss on CUB2011 using ResNet-50
python train.py --dataset cub2011 --model margin --base resnet50

# download GoogLeNet weights and train using LiftedStruct loss
wget -P ./data https://github.com/vadimkantorov/metriclearningbench/releases/download/data/googlenet.h5
python train.py --dataset cub2011 --model liftedstruct --base inception_v1_googlenet

# evaluate raw final layer embeddings on CUB2011 using ResNet-50
python train.py --dataset cub2011 --model untrained  --epochs 1

About

Metric learning models in PyTorch with results on CUB2011, CARS196, Stanford Online Products

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%