Skip to content

An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

License

Notifications You must be signed in to change notification settings

oneQuery/CLIP4Clip

 
 

Repository files navigation

CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval

(July 28, 2021) Add ViT-B/16 with an extra --pretrained_clip_name

(Apr. 22, 2021) First version

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval.

CLIP4Clip is a video-text retrieval model based on CLIP (ViT-B). We investigate three similarity calculation approaches: parameter-free type, sequential type, and tight type, in this work. The model achieve SOTA results on MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo.

CLIP4Clip

Requirement

# From CLIP
conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
pip install ftfy regex tqdm
pip install opencv-python boto3 requests pandas

Data Preparing

For MSRVTT

The official data and video links can be found in link.

For the convenience, you can also download the splits and captions by,

wget https://github.com/ArrowLuo/CLIP4Clip/releases/download/v0.0/msrvtt_data.zip

Besides, the raw videos can be found in sharing from Frozen️ in Time, i.e.,

wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip

For MSVD

Raw videos can be download from link.

The splits and raw_captions can be found in the wonderful job collaborative-experts. For the convenience, you can also download them by,

wget https://github.com/ArrowLuo/CLIP4Clip/releases/download/v0.0/msvd_data.zip

For LSMDC

You must obtain permission from MPII to download and use the data. The download link is here. The 1000 test clips data is link. Read our paper and the dataloader for more information.

For ActivityNet

The official websit has made the full dataset available on Google and Baidu drives, see more information at here . The splits can be found in the job collaborative-experts.

For DiDeMo

Raw videos can be download from LisaAnne/LocalizingMoments. The splits can be found in the job collaborative-experts.

Compress Video for Speed-up (optional)

python preprocess/compress_video.py --input_root [raw_video_path] --output_root [compressed_video_path]

This script will compress the video to 3fps with width 224 (or height 224). Modify the variables for your customization.

How to Run

--features_path is the video root path

--linear_patch can be set with 2d or 3d

--sim_header can be set with meanP, seqLSTM, seqTransf, or tightTransf

--pretrained_clip_name can be set with ViT-B/32 or ViT-B/16

--resume_model can be used to reload the saved optimizer state to continuely train the model, Note: need to set the corresponding chechpoint via --init_model simultaneously.

read our paper for more details on --linear_patch and --sim_header. Test more hyperparameters for better performance.

Download CLIP (ViT-B/32) weight,

wget -P ./modules https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt

or, download CLIP (ViT-B/16) weight,

wget -P ./modules https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt

Then, run

The CLIP (ViT-B/32) is the default setting in the paper, replacing with the ViT-B/16 for better performance.

MSRVTT

DATA_PATH=[Your MSRVTT data and videos path]
python -m torch.distributed.launch --nproc_per_node=4 \
main_task_retrieval.py --do_train --num_thread_reader=0 \
--epochs=5 --batch_size=128 --n_display=50 \
--train_csv ${DATA_PATH}/MSRVTT_train.9k.csv \
--val_csv ${DATA_PATH}/MSRVTT_JSFUSION_test.csv \
--data_path ${DATA_PATH}/MSRVTT_data.json \
--features_path ${DATA_PATH}/MSRVTT_Videos \
--output_dir ckpts/ckpt_msrvtt_retrieval_looseType \
--lr 1e-4 --max_words 32 --max_frames 12 --batch_size_val 16 \
--datatype msrvtt --expand_msrvtt_sentences  \
--feature_framerate 1 --coef_lr 1e-3 \
--freeze_layer_num 0  --slice_framepos 2 \
--loose_type --linear_patch 2d --sim_header meanP \
--pretrained_clip_name ViT-B/32

MSVD

DATA_PATH=[Your MSVD data and videos path]
python -m torch.distributed.launch --nproc_per_node=4 \
main_task_retrieval.py --do_train --num_thread_reader=2 \
--epochs=5 --batch_size=128 --n_display=50 \
--data_path ${DATA_PATH} \
--features_path ${DATA_PATH}/MSVD_Videos \
--output_dir ckpts/ckpt_msvd_retrieval_looseType \
--lr 1e-4 --max_words 32 --max_frames 12 --batch_size_val 16 \
--datatype msvd \
--feature_framerate 1 --coef_lr 1e-3 \
--freeze_layer_num 0 --slice_framepos 2 \
--loose_type --linear_patch 2d --sim_header meanP \
--pretrained_clip_name ViT-B/32

LSMDC

DATA_PATH=[Your LSMDC data and videos path]
python -m torch.distributed.launch --nproc_per_node=4 \
main_task_retrieval.py --do_train --num_thread_reader=2 \
--epochs=5 --batch_size=128 --n_display=50 \
--data_path ${DATA_PATH} \
--features_path ${DATA_PATH}/LSMDC_Videos \
--output_dir ckpts/ckpt_lsmdc_retrieval_looseType \
--lr 1e-4 --max_words 32 --max_frames 12 --batch_size_val 16 \
--datatype lsmdc --feature_framerate 1 --coef_lr 1e-3 \
--freeze_layer_num 0  --slice_framepos 2 \
--loose_type --linear_patch 2d --sim_header meanP \
--pretrained_clip_name ViT-B/32

ActivityNet

ActivityNet is regarded as video-paragraph retrieval in our setting, thus, need more GPUs (or run with multi-node).

DATA_PATH=[Your ActivityNet data and videos path]
python -m torch.distributed.launch --nproc_per_node=8 \
main_task_retrieval.py --do_train --num_thread_reader=2 \
--epochs=5 --batch_size=128 --n_display=50 \
--data_path ${DATA_PATH} \
--features_path ${DATA_PATH}/Activity_Videos \
--output_dir ckpts/ckpt_activity_retrieval_looseType \
--lr 1e-4 --max_words 64 --max_frames 64 --batch_size_val 16 \
--datatype activity --feature_framerate 1 --coef_lr 1e-3 \
--freeze_layer_num 0  --slice_framepos 2 \
--loose_type --linear_patch 2d --sim_header meanP \
--pretrained_clip_name ViT-B/32

DiDeMo

DiDeMo is regarded as video-paragraph retrieval in our setting, thus, need more GPUs (or run with multi-node).

DATA_PATH=[Your DiDeMo data and videos path]
python -m torch.distributed.launch --nproc_per_node=8 \
main_task_retrieval.py --do_train --num_thread_reader=2 \
--epochs=5 --batch_size=128 --n_display=50 \
--data_path ${DATA_PATH} \
--features_path ${DATA_PATH}/DiDeMo_Videos \
--output_dir ckpts/ckpt_didemo_retrieval_looseType \
--lr 1e-4 --max_words 64 --max_frames 64 --batch_size_val 16 \
--datatype didemo --feature_framerate 1 --coef_lr 1e-3 \
--freeze_layer_num 0  --slice_framepos 2 \
--loose_type --linear_patch 2d --sim_header meanP \
--pretrained_clip_name ViT-B/32

Citation

If you find CLIP4Clip useful in your work, you can cite the following paper:

@Article{Luo2021CLIP4Clip,
  author  = {Huaishao Luo and Lei Ji and Ming Zhong and Yang Chen and Wen Lei and Nan Duan and Tianrui Li},
  title   = {{CLIP4Clip}: An Empirical Study of CLIP for End to End Video Clip Retrieval},
  journal = {arXiv preprint arXiv:2104.08860},
  year    = {2021},
}

Acknowledgments

Our code is based on CLIP and UniVL.

About

An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%