Skip to content

Provide functionality to build statistical models to repair dirty tabular data in Spark

License

Notifications You must be signed in to change notification settings

maropu/spark-data-repair-plugin

Repository files navigation

License Build and test

This is an experimental prototype for building a statistical model to repair tabular data errors on Apache Spark which is a parallel and distributed framework for large-scale data processing. Clean and consistent data is one of major interests for downstream analytics; clean data makes machine learning and BI reporting more accurate and consistent data with constraints (e.g., functional dependences) is important for efficient query plans. Therefore, data repairing is a first step for a reliable analytics pipeline.

How to Repair Error Cells

$ git clone https://github.com/maropu/spark-data-repair-plugin.git
$ cd spark-data-repair-plugin

# This repository includes a simple wrapper script `bin/python` to create
# a conda virtual environment to resolve the required dependencies
# (e.g., Python 3.7 and PySpark 3.2), and then
# launch a Python VM with our plugin.
$ ./bin/python

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.2.0
      /_/

Using Python version 3.7.11 (default, Jul 27 2021 07:03:16)
SparkSession available as 'spark'.
Delphi APIs (version 0.1.0-spark3.2-EXPERIMENTAL) available as 'delphi'.

# Loads CSV data having seven NULL cells
>>> spark.read.option("header", True).csv("./testdata/adult.csv").createOrReplaceTempView("adult")
>>> spark.table("adult").show()
+---+-----+------------+-----------------+-------------+------+-------------+-----------+
|tid|  Age|   Education|       Occupation| Relationship|   Sex|      Country|     Income|
+---+-----+------------+-----------------+-------------+------+-------------+-----------+
|  0|31-50|Some-college|     Craft-repair|      Husband|  Male|United-States|LessThan50K|
|  1|  >50|Some-college|  Exec-managerial|    Own-child|Female|United-States|LessThan50K|
|  2|31-50|   Bachelors|            Sales|      Husband|  Male|United-States|LessThan50K|
|  3|22-30|     HS-grad|     Craft-repair|    Own-child|  null|United-States|LessThan50K|
|  4|22-30|     HS-grad|  Farming-fishing|      Husband|Female|United-States|LessThan50K|
|  5| null|Some-college|     Craft-repair|      Husband|  Male|United-States|       null|
|  6|31-50|     HS-grad|   Prof-specialty|Not-in-family|Female|United-States|LessThan50K|
|  7|31-50| Prof-school|   Prof-specialty|      Husband|  null|        India|MoreThan50K|
|  8|18-21|Some-college|     Adm-clerical|    Own-child|Female|United-States|LessThan50K|
|  9|  >50|     HS-grad|  Farming-fishing|      Husband|  Male|United-States|LessThan50K|
| 10|  >50|   Assoc-voc|   Prof-specialty|      Husband|  Male|United-States|LessThan50K|
| 11|  >50|     HS-grad|            Sales|      Husband|Female|United-States|MoreThan50K|
| 12| null|   Bachelors|  Exec-managerial|      Husband|  null|United-States|MoreThan50K|
| 13|22-30|     HS-grad|     Craft-repair|Not-in-family|  Male|United-States|LessThan50K|
| 14|31-50|  Assoc-acdm|  Exec-managerial|    Unmarried|  Male|United-States|LessThan50K|
| 15|22-30|Some-college|            Sales|    Own-child|  Male|United-States|LessThan50K|
| 16|  >50|Some-college|  Exec-managerial|    Unmarried|Female|United-States|       null|
| 17|31-50|     HS-grad|     Adm-clerical|Not-in-family|Female|United-States|LessThan50K|
| 18|31-50|        10th|Handlers-cleaners|      Husband|  Male|United-States|LessThan50K|
| 19|31-50|     HS-grad|            Sales|      Husband|  Male|         Iran|MoreThan50K|
+---+-----+------------+-----------------+-------------+------+-------------+-----------+

# Runs a job to compute repair updates for the seven NULL cells above in `dirty_df`
# A `repaired` column represents proposed updates to repiar them
>>> from repair.errors import NullErrorDetector
>>> repair_updates_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .setErrorDetectors([NullErrorDetector()]) \
...   .run()

>>> repair_updates_df.show()
+---+---------+-------------+-----------+
|tid|attribute|current_value|   repaired|
+---+---------+-------------+-----------+
|  7|      Sex|         null|     Female|
| 12|      Age|         null|      18-21|
| 12|      Sex|         null|     Female|
|  3|      Sex|         null|     Female|
|  5|      Age|         null|      18-21|
|  5|   Income|         null|MoreThan50K|
| 16|   Income|         null|MoreThan50K|
+---+---------+-------------+-----------+

# You need to set `True` to `repair_data` for getting repaired data directly
>>> clean_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .setErrorDetectors([NullErrorDetector()]) \
...   .run(repair_data=True)

>>> clean_df.show()
+---+-----+------------+-----------------+-------------+------+-------------+-----------+
|tid|  Age|   Education|       Occupation| Relationship|   Sex|      Country|     Income|
+---+-----+------------+-----------------+-------------+------+-------------+-----------+
|  0|31-50|Some-college|     Craft-repair|      Husband|  Male|United-States|LessThan50K|
|  1|  >50|Some-college|  Exec-managerial|    Own-child|Female|United-States|LessThan50K|
|  2|31-50|   Bachelors|            Sales|      Husband|  Male|United-States|LessThan50K|
|  3|22-30|     HS-grad|     Craft-repair|    Own-child|  Male|United-States|LessThan50K|
|  4|22-30|     HS-grad|  Farming-fishing|      Husband|Female|United-States|LessThan50K|
|  5|31-50|Some-college|     Craft-repair|      Husband|  Male|United-States|LessThan50K|
|  6|31-50|     HS-grad|   Prof-specialty|Not-in-family|Female|United-States|LessThan50K|
|  7|31-50| Prof-school|   Prof-specialty|      Husband|  Male|        India|MoreThan50K|
|  8|18-21|Some-college|     Adm-clerical|    Own-child|Female|United-States|LessThan50K|
|  9|  >50|     HS-grad|  Farming-fishing|      Husband|  Male|United-States|LessThan50K|
| 10|  >50|   Assoc-voc|   Prof-specialty|      Husband|  Male|United-States|LessThan50K|
| 11|  >50|     HS-grad|            Sales|      Husband|Female|United-States|MoreThan50K|
| 12|31-50|   Bachelors|  Exec-managerial|      Husband|  Male|United-States|MoreThan50K|
| 13|22-30|     HS-grad|     Craft-repair|Not-in-family|  Male|United-States|LessThan50K|
| 14|31-50|  Assoc-acdm|  Exec-managerial|    Unmarried|  Male|United-States|LessThan50K|
| 15|22-30|Some-college|            Sales|    Own-child|  Male|United-States|LessThan50K|
| 16|  >50|Some-college|  Exec-managerial|    Unmarried|Female|United-States|LessThan50K|
| 17|31-50|     HS-grad|     Adm-clerical|Not-in-family|Female|United-States|LessThan50K|
| 18|31-50|        10th|Handlers-cleaners|      Husband|  Male|United-States|LessThan50K|
| 19|31-50|     HS-grad|            Sales|      Husband|  Male|         Iran|MoreThan50K|
+---+-----+------------+-----------------+-------------+------+-------------+-----------+

# Or, you can merge the computed repair updates with the input table as follows
>>> repair_updates_df.createOrReplaceTempView("predicted")
>>> clean_df = delphi.misc.options({"repair_updates": "predicted", "table_name": "adult", "row_id": "tid"}).repair()
>>> clean_df.show()
<the same output above>

For more running examples, please check Python scripts in the resources/examples folder.

NOTE: There are many types of errors on dirty data [9], but our purpose is to repair the data whose attribute already has correct values against their errors. For instance, in the Sex column in the adult table above, our plugin can repair the three NULL cells because it already has correct values, Female or Male, against the NULL cells. To repair them, our plugin captures and exploits data dependencies between the Sex column and the other ones. For repairing the other types of data errors, existing data cleaning tools might be suitable; a programming-by-examples technique is a good fit to fix format errors like 2021.8.23 -> 2021/8/23 and Trifacta has a functionality, named Transformation by Example, to implement it. Few existing tools can handle the error cases in the adult example above and, therefore, our plugin is complementary to those other tools.

Error Detection

To detect error cells, you can use some of bult-in error detectors below:

  • NullErrorDetector
  • DomainValues
  • RegExErrorDetector
  • ConstraintErrorDetector
  • GaussianOutlierErrorDetector
  • LOFOutlierErrorDetector

Please check the example code for how to use these error detectors. If you specify no error detector, DomainValuess for each attribute and NullErrorDetector are used by default.

# Setting `True` to `detect_errors_only` lets you get detected error cells only
>>> error_cells_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .setErrorDetectors([NullErrorDetector()]) \
...   .run(detect_errors_only=True)

>>> error_cells_df.show()
+---+---------+-------------+
|tid|attribute|current_value|
+---+---------+-------------+
| 12|      Age|         null|
|  5|      Age|         null|
| 12|      Sex|         null|
|  7|      Sex|         null|
|  3|      Sex|         null|
| 16|   Income|         null|
|  5|   Income|         null|
+---+---------+-------------+

# `DomainValue`s and `NullErrorDetector` are used by default
>>> error_cells_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .run(detect_errors_only=True)

>>> error_cells_df.show()
+---+----------+--------------+
|tid| attribute| current_value|
+---+----------+--------------+
| 12|       Age|          null|
|  5|       Age|          null|
|  7|       Sex|          null|
| 12|       Sex|          null|
|  3|       Sex|          null|
|  5|    Income|          null|
| 16|    Income|          null|
|  4|       Age|         22-30|
|  8|       Age|         18-21|
|  3|       Age|         22-30|
| 13|       Age|         22-30|
| 15|       Age|         22-30|
| 10| Education|     Assoc-voc|
|  7| Education|   Prof-school|
| 14| Education|    Assoc-acdm|
| 12| Education|     Bachelors|
|  2| Education|     Bachelors|
| 18| Education|          10th|
|  0|Occupation|  Craft-repair|
|  6|Occupation|Prof-specialty|
+---+----------+--------------+
only showing top 20 rows

Note that ConstraintErrorDetector is the most powerful choice; it uses denial constraints [5] that an input tabular data should follow. The constraints consist of the predicates that cannot hold true simultaneously.

# Constraints below mean that `Sex="Female"` and `Relationship="Husband"`
# (`Sex="Male"` and `Relationship="Wife"`) does not hold true simultaneously.
# Note that the syntax for denial constraints follows the HoloClean [7] one and
# it is a research-backed statistical inference engine to clean data.
$ cat ./testdata/adult_constraints.txt
t1&EQ(t1.Sex,"Female")&EQ(t1.Relationship,"Husband")
t1&EQ(t1.Sex,"Male")&EQ(t1.Relationship,"Wife")

# Use the constraints to detect errors and then repair them
>>> repair_updates_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .setErrorDetectors([NullErrorDetector(), ConstraintErrorDetector(constraint_path="./testdata/adult_constraints.txt")]) \
...   .run()

# Changes values from `Female` to `Male` in the `Sex` cells
# of the 4th and 11th rows.
>>> repair_updates_df.show()
+---+------------+-------------+-----------+
|tid|   attribute|current_value|   repaired|
+---+------------+-------------+-----------+
|  3|         Sex|         null|       Male|
|  4|Relationship|      Husband|    Husband|
|  4|         Sex|       Female|       Male|
|  5|         Age|         null|      31-50|
|  5|      Income|         null|LessThan50K|
|  7|         Sex|         null|       Male|
| 11|Relationship|      Husband|    Husband|
| 11|         Sex|       Female|       Male|
| 12|         Age|         null|      31-50|
| 12|         Sex|         null|       Male|
| 16|      Income|         null|LessThan50K|
+---+------------+-------------+-----------+

# If the "adult" table has a functional dependency from "Age" to "Income",
# its dependency is represented as a following denial constraint:
>>> repair_updates_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .setErrorDetectors([ConstraintErrorDetector(constraints="t1&t2&EQ(t1.Age,t2.Age)&IQ(t1.Income,t2.Income)")]) \
...   .run()

# Or, you can use syntactic sugar instead
>>> repair_updates_df = delphi.repair \
...   .setInput("adult") \
...   .setRowId("tid") \
...   .setErrorDetectors([ConstraintErrorDetector(constraints="Age->Income")]) \
...   .run()

Repairing based on Predicted Probabilities

If you want to select some of repaired updates based on theier probabilities, you can set True to compute_repair_prob for getting the probabilities from built statistical models.

# To get predicted probabilities, computes repair updates with `compute_repair_prob`=`True`
>>> repair_updates_df = delphi.repair.setInput("adult").setRowId("tid").run(compute_repair_prob=True)
>>> repair_updates_df.show()
+---+---------+-------------+-----------+------------------+
|tid|attribute|current_value|   repaired|              prob|
+---+---------+-------------+-----------+------------------+
|  3|      Sex|         null|     Female|0.6664498420338913|
|  7|      Sex|         null|     Female|0.7436767447201434|
| 16|   Income|         null|MoreThan50K|0.8721610530603738|
|  5|      Age|         null|      18-21|0.3018171710707878|
|  5|   Income|         null|MoreThan50K|0.8333912988626406|
| 12|      Age|         null|      18-21|0.3598905853884847|
| 12|      Sex|         null|     Female|0.7436767447201434|
+---+---------+-------------+-----------+------------------+

# Applies the repair udpates whose probabilities are greater than 0.70
>>> repair_updates_df.where("prob > 0.70").createOrReplaceTempView("predicted")
>>> clean_df = delphi.misc.options({"repair_updates": "predicted", "table_name": "adult", "row_id": "tid"}).repair()
>>> clean_df.show()
<output with the four cells repaired>

Run a Repair Job via spark-submit

You can run a repair job (main.py) on your Spark cluster as following:

$ echo $SPARK_HOME
/tmp/spark-3.2.0-bin-hadoop3.2

$ ./bin/spark-submit ./python/main.py --input adult --output repaired --row-id tid
Predicted repair values are saved as 'repaired'

$ $SPARK_HOME/bin/spark-shell

scala> spark.table("repaired").show()
+---+---------+-------------+-----------+
|tid|attribute|current_value|   repaired|
+---+---------+-------------+-----------+
|  7|      Sex|         null|     Female|
| 12|      Age|         null|      18-21|
| 12|      Sex|         null|     Female|
|  3|      Sex|         null|     Female|
|  5|      Age|         null|      18-21|
|  5|   Income|         null|MoreThan50K|
| 16|   Income|         null|MoreThan50K|
+---+---------+-------------+-----------+

Major Configurations

delphi.repair

  // Basic Parameters
  .setDbName(str)                              // database name (default: '')
  .setInput(str)                               // table name or `DataFrame`
  .setRowId(str)                               // unique column name in table
  .setTargets(list)                            // target attribute list to repair

  // Parameters for Error Detection
  .setErrorCells(str)                          // user-specified error cells
  .setErrorDetectors(list)                     // list of error detector implementations (`NullErrorDetector`, `DomainValues`, `RegExErrorDetector`, `ConstraintErrorDetector`, and `GaussianOutlierErrorDetector`)
  .setDiscreteThreshold(int)                   // max domain size of discrete values (default: 80)

  // Parameters for Repair Model Training
  .setRepairByRules(bool)                      // whether to enable rule-based repair techniques, e.g., using functional dependencies and merging nearest values (default: False)
  .setParallelStatTrainingEnabled(bool)        // whether to run multiples tasks to build stat repair models (default: False)
  .setTrainingDataRebalancingEnabled(bool)     // whether to rebalance class labels in training data (default: False)

  // Parameters for Repairing
  .setRepairDelta(int)                         // max number of applied repairs

  // Running Mode Parameters
  .run(
    detect_errors_only=bool,                   // whether to return detected error cells (default: False)
    compute_repair_candidate_prob=bool,        // whether to return probabiity mass function of candidate repairs (default: False)
    compute_repair_prob=bool,                  // whether to return probabiity of predicted repairs
    repair_data=bool                           // whether to return repaired data
  )

References

  • [1] Heidari, Alireza et al., HoloDetect: Few-Shot Learning for Error Detection, Proceedings of SIGMOD, 2019.
  • [2] Mohamed Yakout et. al., Don't be SCAREd: use SCalable Automatic REpairing with maximal likelihood and bounded changes, Proceedings of SIGMOD, 2013.
  • [3] Ihab F. Ilyas and Xu Chu, Data Cleaning, ACM Books, 2019.
  • [4] Theodoros Rekatsinas et al., Holoclean: Holistic Data Repairs with Probabilistic Inference, PVLDB 10, no.11, pp.1190-1201, 2017.
  • [5] Jan Chomicki and Jerzy Marcinkowski, Minimal-Change Integrity Maintenance Using TupleDdeletions, Inf. Comput. 197(1-2), pp.90–121, 2005.
  • [6] Eduardo H. M. Pena et al., Discovery of Approximate (and Exact) Denial Constraints. Proceedings of the VLDB Endowment. 13(3), pp.266–278, 2019.
  • [7] Wu, Richard et al., Attention-based Learning for Missing Data Imputation in HoloClean, MLSys, 2020.
  • [8] Michael Stonebraker et al., Data Curation at Scale: The Data Tamer System, CIDR, 2013.
  • [9] Ziawasch Abedjan et al., Detecting Data Errors: Where Are We and What Needs to be Done?, Proceedings of the VLDB Endowment, 9(12), pp.993–1004, 2016.
  • [10] Zuhair Khayyat et al., BigDansing: A System for Big Data Cleansing, Proceedings of SIGMOD, pp.1215–1230, 2015.
  • [11] George Papadakis, et al., Blocking and Filtering Techniques for Entity Resolution, ACM Computing Surveys, Article 31, pp.42, 2020.
  • [12] Ahmed K. Elmagarmid et al., Duplicate Record Detection: A Survey, IEEE Transactions on Knowledge and Data Engineering, vol.19, no.1, pp.1-16, 2007.
  • [13] Ihab F. Ilyas and Xu Chu, Trends in Cleaning Relational Data: Consistency and Deduplication, Foundations and Trends in Databases, vol.5, no.4, pp.281-393, 2015.
  • [14] Mohamed Yakout et al., Guided data repair, Proceedings of the VLDB Endowment, 4(5), pp.279–289, 2011.
  • [15] El Kindi Rezig et al., Horizon: Scalable Dependency-driven Data Cleaning, Proceedings of the VLDB Endowment, vol.14, no.11, 2021.
  • [16] Peng Li et al., CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks, Proceedings of ICDE, pp.13-24, 2021.
  • [17] Zeyu Li et al., Repairing data through regular expressions, Proceedings of the VLDB Endowment, vol.9, no.5, pp.432-443, 2016.
  • [18] Leopoldo Bertossi, Database Repairing and Consistent Query Answering, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2011.
  • [19] Babak Salimi et al., Interventional Fairness: Causal Database Repair for Algorithmic Fairness, Proceedings of SIGMOD, pp.793–810, 2019.

TODO

  • Implements a rule-based repair strategy using regular expressions (See [17])

Bug Reports

If you hit some bugs and have requests, please leave some comments on Issues or Twitter (@maropu).

About

Provide functionality to build statistical models to repair dirty tabular data in Spark

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published