Skip to content

hariprasath-v/Hackerearth_tredence-data-scientist-hiring-challenge

Repository files navigation

Hackerearth_tredence-data-scientist-hiring-challenge

Competition hosted on Hackerearth

About

Machine Learning model to predict the weekly dispatch count of the warehouse based on the different warehouses' product-wise daily dispatch data.

Final Score 82.4

Evaluation Metric is Mean Absolute Percentage Error.

File information

  • tredence-data-scientist-hiring-challenge_EDA.ipynb

    Packages Used,

     * seaborn
     * Pandas
     * klib
     * Numpy
     * Matplotlib
     * re
    

    Basic Exploratory Data Analysis

  • tredence-data-scientist-hiring-challenge_Model.ipynb

    Packages Used,

      * Sklearn
      * re
      * Pandas
      * Numpy
      * Matplotlib
      * catboost
    

    Data Pre-processing

    For the test data daily dispatch count is to be predicted. So first build the catboost regressor model to predict the daily dispatch count and then by using the daily dispatch count build the final catboost regressor model for weekly dispatch count prediction.

Daily Dispatch Model Feature Importance

Alt text

Weely Dispatch Model Feature Importance

Alt text

Daily Dispatch Count Prediction Plot

Alt text

Weekly Dispatch Count Prediction Plot

Alt text