Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex
- PMID: 10404201
- DOI: 10.1038/10223
Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex
Abstract
To determine whether simultaneously recorded motor cortex neurons can be used for real-time device control, rats were trained to position a robot arm to obtain water by pressing a lever. Mathematical transformations, including neural networks, converted multineuron signals into 'neuronal population functions' that accurately predicted lever trajectory. Next, these functions were electronically converted into real-time signals for robot arm control. After switching to this 'neurorobotic' mode, 4 of 6 animals (those with > 25 task-related neurons) routinely used these brain-derived signals to position the robot arm and obtain water. With continued training in neurorobotic mode, the animals' lever movement diminished or stopped. These results suggest a possible means for movement restoration in paralysis patients.
Comment in
-
Real-time control of a robotic arm by neuronal ensembles.Nat Neurosci. 1999 Jul;2(7):583-4. doi: 10.1038/10131. Nat Neurosci. 1999. PMID: 10404169 No abstract available.
Similar articles
-
Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.Nature. 2000 Nov 16;408(6810):361-5. doi: 10.1038/35042582. Nature. 2000. PMID: 11099043
-
Real-time control of a robotic arm by neuronal ensembles.Nat Neurosci. 1999 Jul;2(7):583-4. doi: 10.1038/10131. Nat Neurosci. 1999. PMID: 10404169 No abstract available.
-
Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys.J Cogn Neurosci. 2004 Jul-Aug;16(6):1022-35. doi: 10.1162/0898929041502652. J Cogn Neurosci. 2004. PMID: 15298789
-
Using multi-neuron population recordings for neural prosthetics.Nat Neurosci. 2004 May;7(5):452-5. doi: 10.1038/nn1234. Nat Neurosci. 2004. PMID: 15114357 Review.
-
Physiological and pathological oscillatory networks in the human motor system.J Physiol Paris. 2006 Jan;99(1):3-7. doi: 10.1016/j.jphysparis.2005.06.010. Epub 2005 Jul 27. J Physiol Paris. 2006. PMID: 16054347 Review.
Cited by
-
Organoid intelligence for developmental neurotoxicity testing.Front Cell Neurosci. 2024 Oct 8;18:1480845. doi: 10.3389/fncel.2024.1480845. eCollection 2024. Front Cell Neurosci. 2024. PMID: 39440004 Free PMC article.
-
Brain-Computer Interfaces with Intracortical Implants for Motor and Communication Functions Compensation: Review of Recent Developments.Sovrem Tekhnologii Med. 2024;16(1):78-89. doi: 10.17691/stm2024.16.1.08. Epub 2024 Feb 28. Sovrem Tekhnologii Med. 2024. PMID: 39421626 Free PMC article. Review.
-
Transitioning from global to local computational strategies during brain-machine interface learning.Front Neurosci. 2024 Apr 19;18:1371107. doi: 10.3389/fnins.2024.1371107. eCollection 2024. Front Neurosci. 2024. PMID: 38707591 Free PMC article.
-
Assistive sensory-motor perturbations influence learned neural representations.bioRxiv [Preprint]. 2024 Dec 4:2024.03.20.585972. doi: 10.1101/2024.03.20.585972. bioRxiv. 2024. PMID: 38562772 Free PMC article. Preprint.
-
Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics.Front Neurosci. 2023 Oct 31;17:1275908. doi: 10.3389/fnins.2023.1275908. eCollection 2023. Front Neurosci. 2023. PMID: 38027514 Free PMC article. Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources