# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a339847 Showing 1-1 of 1 %I A339847 #70 Jun 19 2024 10:49:15 %S A339847 1,0,0,0,0,0,0,1,105,30016,11180820,5188453830,2977635137862, %T A339847 2099132870973600,1803595358964773088,1872726690127181663775, %U A339847 2329676580698022197516875,3443086402825299720403673760,5997229769947050271535917422040,12218901113752712984458458475480428 %N A339847 The number of labeled 6-regular graphs on n nodes. %H A339847 Marni Mishna, Table of n, a(n) for n = 0..195 (terms 0..36 from Andrew Howroyd, terms 37..40 from Atabey Kaygun) %H A339847 Frédéric Chyzak and Marni Mishna Differential equations satisfied by generating functions of 5-, 6-, and 7-regular labelled graphs: a reduction-based approach, arXiv:2406.04753 [math.CO], 2024. %H A339847 Atabey Kaygun, Counting Graphs with a Prescribed Degree Sequence. %H A339847 Atabey Kaygun, Common LISP program that generates the sequence. %H A339847 Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021. %H A339847 Marni Mishna, Maple code to generate terms. %o A339847 (PARI) \\ Needs GraphsByDegreeSeq from links in A295193. %o A339847 a(n)={my(M=GraphsByDegreeSeq(n, 6, (p,r)->6-valuation(p,x) <= r)); if(n>=7, vecsum(M[,2]), n==0)} \\ _Andrew Howroyd_, Dec 26 2020 %Y A339847 Column k=6 of A059441. %Y A339847 Cf. A165627 (unlabeled case), A295193. %K A339847 nonn %O A339847 0,9 %A A339847 _Atabey Kaygun_, Dec 21 2020 %E A339847 Terms a(14) and beyond from _Andrew Howroyd_, Dec 26 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE