login

Revision History for A376507

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.
(history; published version)
#8 by N. J. A. Sloane at Mon Sep 30 12:59:12 EDT 2024
STATUS

proposed

approved

#7 by Michel Marcus at Thu Sep 26 01:52:26 EDT 2024
STATUS

editing

proposed

#6 by Michel Marcus at Thu Sep 26 01:52:22 EDT 2024
REFERENCES

Alexander K. Dewdney: , Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

STATUS

proposed

editing

#5 by Stefano Spezia at Thu Sep 26 00:34:25 EDT 2024
STATUS

editing

proposed

#4 by Stefano Spezia at Thu Sep 26 00:34:13 EDT 2024
LINKS

<a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

FORMULA

G.f.: 2*x*(9 + 3*x + x^2 + 3*x^3 + 9*x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024

KEYWORD

nonn,easy,changed

STATUS

proposed

editing

#3 by Martin Renner at Wed Sep 25 17:07:51 EDT 2024
STATUS

editing

proposed

Discussion
Wed Sep 25
20:34
Kevin Ryde: 4 possible remainders mod 50, so linear recurrence and keyword easy ?
#2 by Martin Renner at Wed Sep 25 16:57:31 EDT 2024
NAME

allocated for Martin Renner

Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.

DATA

18, 24, 26, 32, 68, 74, 76, 82, 118, 124, 126, 132, 168, 174, 176, 182, 218, 224, 226, 232, 268, 274, 276, 282, 318, 324, 326, 332, 368, 374, 376, 382, 418, 424, 426, 432, 468, 474, 476, 482, 518, 524, 526, 532, 568, 574, 576, 582, 618, 624, 626, 632, 668, 674

OFFSET

1,1

COMMENTS

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (this sequence), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).

The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 2, 6, 36, ...

REFERENCES

Alexander K. Dewdney: Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

EXAMPLE

18^2 = 24 -> 24^2 = 76 -> 76^2 = 76 -> ... (mod 100).

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Martin Renner, Sep 25 2024

STATUS

approved

editing

#1 by Martin Renner at Wed Sep 25 16:47:54 EDT 2024
NAME

allocated for Martin Renner

KEYWORD

allocated

STATUS

approved