login

Revision History for A372377

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of (1/x) * Series_Reversion( x * (1+x)^2 / (1+x+x^3)^3 ).
(history; published version)
#10 by Michael De Vlieger at Mon Apr 29 09:06:36 EDT 2024
STATUS

proposed

approved

#9 by Seiichi Manyama at Mon Apr 29 09:04:47 EDT 2024
STATUS

editing

proposed

#8 by Seiichi Manyama at Mon Apr 29 08:53:08 EDT 2024
FORMULA

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(n-k+1,n-3*k).

PROG

(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1+x)^2/(1+x+x^3)^3)/x)

#7 by Seiichi Manyama at Mon Apr 29 05:21:41 EDT 2024
DATA

1, 1, 1, 4, 13, 31, 91, 313, 988, 3095, 10377, 35146, 117682, 400117, 1381582, 4779997, 16599766, 58095076, 204319835, 720756820, 2552544940, 9074710255, 32356325145, 115679362789, 414701335849, 1490297002000, 5367227015647, 19369656905210, 70038419041844

#6 by Seiichi Manyama at Mon Apr 29 04:56:51 EDT 2024
NAME

Expansion of (1/x) * Series_Reversion( x * (1+x)^2 / (1+x+x^3)^3) ).

#5 by Seiichi Manyama at Mon Apr 29 04:13:02 EDT 2024
LINKS

<a href="/index/Res#revert">Index entries for reversions of series</a>

#4 by Seiichi Manyama at Mon Apr 29 04:02:55 EDT 2024
CROSSREFS
#3 by Seiichi Manyama at Mon Apr 29 02:31:27 EDT 2024
PROG

(PARI) a(n, s=3, t=3, u=-2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

#2 by Seiichi Manyama at Mon Apr 29 02:27:15 EDT 2024
NAME

allocated for Seiichi Manyama

Expansion of (1/x) * Series_Reversion( x * (1+x)^2 / (1+x+x^3)^3) ).

DATA

1, 1, 1, 4, 13, 31, 91, 313, 988, 3095, 10377, 35146, 117682, 400117, 1381582, 4779997, 16599766, 58095076, 204319835, 720756820, 2552544940, 9074710255, 32356325145, 115679362789, 414701335849

OFFSET

0,4

KEYWORD

allocated

nonn

AUTHOR

Seiichi Manyama, Apr 29 2024

STATUS

approved

editing

#1 by Seiichi Manyama at Mon Apr 29 02:27:15 EDT 2024
NAME

allocated for Seiichi Manyama

KEYWORD

allocated

STATUS

approved