login

Revision History for A372018

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f. A(x) satisfies A(x) = ( 1 + 4*x*A(x)/(1 - x*A(x)) )^(1/2).
(history; published version)
#12 by R. J. Mathar at Mon Apr 22 12:45:55 EDT 2024
STATUS

editing

approved

#11 by R. J. Mathar at Mon Apr 22 12:45:48 EDT 2024
FORMULA

D-finite with recurrence n*(n+1)*(n-2)*a(n) -6*(n-2)*(3*n^2-6*n+1)*a(n-2) -27*n*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Apr 22 2024

Conjecture: a(2n+1) = 2*A371364(). - R. J. Mathar, Apr 22 2024

MAPLE

A372018 := proc(n)

add(4^k*binomial((n+1)/2, k)*binomial(n-1, k-1), k=0..n) ;

%/(n+1) ;

end proc:

seq(A372018(n), n=0..60) ; # R. J. Mathar, Apr 22 2024

STATUS

approved

editing

#10 by Michael De Vlieger at Tue Apr 16 10:26:35 EDT 2024
STATUS

reviewed

approved

#9 by Joerg Arndt at Tue Apr 16 10:12:12 EDT 2024
STATUS

proposed

reviewed

#8 by Seiichi Manyama at Tue Apr 16 07:20:08 EDT 2024
STATUS

editing

proposed

#7 by Seiichi Manyama at Tue Apr 16 00:03:24 EDT 2024
FORMULA

a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).

#6 by Seiichi Manyama at Tue Apr 16 00:00:39 EDT 2024
CROSSREFS
#5 by Seiichi Manyama at Mon Apr 15 23:57:10 EDT 2024
DATA

1, 2, 4, 10, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218, 1048717979424, 4327273358250, 17903826642780, 74260741616514, 308724721176676

#4 by Seiichi Manyama at Mon Apr 15 23:56:27 EDT 2024
DATA

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 26843545610, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218

#3 by Seiichi Manyama at Mon Apr 15 23:56:03 EDT 2024
FORMULA

a(n) = (1/(n+1)) * Sum_{k=0..n}4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).

PROG

(PARI) a(n) = sum(k=0, n, 4^k*binomial(n/2+1/2, k)*binomial(n-1, n-k))/(n+1);