editing
approved
editing
approved
D-finite with recurrence n*(n+1)*(n-2)*a(n) -6*(n-2)*(3*n^2-6*n+1)*a(n-2) -27*n*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
Conjecture: a(2n+1) = 2*A371364(). - R. J. Mathar, Apr 22 2024
A372018 := proc(n)
add(4^k*binomial((n+1)/2, k)*binomial(n-1, k-1), k=0..n) ;
%/(n+1) ;
end proc:
seq(A372018(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).
1, 2, 4, 10, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218, 1048717979424, 4327273358250, 17903826642780, 74260741616514, 308724721176676
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 26843545610, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218
a(n) = (1/(n+1)) * Sum_{k=0..n}4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).
(PARI) a(n) = sum(k=0, n, 4^k*binomial(n/2+1/2, k)*binomial(n-1, n-k))/(n+1);