reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Equals Sum_{k>=1} 1/A063374(k).
allocated for Amiram EldarDecimal expansion of Sum_{k>=1} 1/Fibonacci(k!).
2, 1, 2, 5, 0, 2, 1, 5, 6, 6, 5, 9, 7, 6, 5, 3, 5, 5, 4, 1, 7, 5, 2, 9, 3, 4, 9, 2, 3, 5, 2, 3, 7, 9, 9, 1, 7, 9, 3, 6, 2, 5, 7, 9, 7, 4, 2, 3, 0, 0, 2, 1, 9, 7, 8, 5, 6, 1, 8, 9, 5, 3, 1, 6, 4, 2, 1, 3, 6, 2, 1, 8, 0, 7, 4, 2, 0, 4, 9, 7, 9, 0, 6, 8, 7, 3, 2, 2, 5, 5, 0, 4, 2, 4, 8, 2, 3, 0, 0, 7, 2, 2, 8, 7, 8
1,1
Nyblom (2000) proved that this constant is transcendental.
M. A. Nyblom, <a href="https://doi.org/10.1216/rmjm/1021477261">A theorem on transcendence of infinite series</a>, The Rocky Mountain Journal of Mathematics, Vol. 30, No. 3 (2000), pp. 1111-1120; <a href="https://www.jstor.org/stable/44238526">alternative link</a>.
<a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
2.12502156659765355417529349235237991793625797423002...
RealDigits[Sum[1/Fibonacci[k!], {k, 1, 10}], 10, 120][[1]]
(PARI) suminf(k = 1, 1/fibonacci(k!))
allocated
nonn,cons
Amiram Eldar, Mar 12 2024
approved
editing
allocating
allocated
allocated for Amiram Eldar
allocating
approved